SECCION A) INSTRUMENTOS Y APARATOS PARA FINES DIDACTICOS Y DE LABORATORIO.

1 Nº 1 - Determinación de radiaciones atómicas con cámara de ionización de aire y electrómetro de cuerda vibrante.

W. Hill y R. Novaro Beltrand.

Instituto de Física. Facultad de Ingeniería.

Se analizan algunas aplicaciones posibles del dispositivo formado por una cámara cilíndrica de ionización (aire) y un electrómetro de cuerda vibrante, con compensación por feed-back negativo. Este dispositivo tiene una sensibilidad comparable a la de los contadores usuales y presenta ventajas en ciertas aplicaciones de rutina en los laboratorios de radioisótopos.

(Trabajo leído en las "Cuartas Sesiones Químicas Rioplatenses", Montevideo, 1957).

2 Nº 2 - Balanza electromagnética para medidas de adsorción, perfeccionada.

W. Olivera, R. Valverde.

Se construyó una balanza electromagnética en base a la de S. J. Gregg (J. Chem. Soc., July 1946, p. 561) con cruz, cuchillas y funcionamiento similares a los de balanzas analíticas de precisión, pero totalmente de vidrio Pyrex.

La estructura es rígida con taras totales de 200 g. y la sensibilidad constante para las cargas de trabajo. La apreciación mecánica es de 0.5 mg. y con sistema electromagnético es del orden de 1 mg.

El vidrio Pyrex trabajado en las condiciones de experiencia resultó ser excelente material para cuchillas y planos de apoyo. Se le colocó un sistema de amortiguamiento por corrientes inducidas. Consiste en un tubo de paredes espesas, de aluminio, que rodea al imán de la balanza.

(Recibido: Marzo 1961).

3 Nº 3 - Construcción de un puente universal para medida de impedancias.

R. Valverde.

Trabajo realizado como estudiante del curso de Física. Se trata de un equipo de construcción compacta, que permite la medida de: Resistencias de 1 ohm a 1 megohm, ± 1 % (puente de Wheatstone).

Capacidades 10-12F a 10-6F (puente de Wien).

Self-inductancias de 0.1 mH a 100 H (puentes de Maxwell y de Hay).

El circuito está diseñado de forma de evitar el empleo de llaves especiales, y a la vez, lograr la máxima versatilidad del equipo.

Tiene incluídos galvanómetro y pilas para hacerlo portátil en medidas de resistencias en C.C.

También se describe un transformador de alimentación equilibrado, y especialmente construído para reducir a un mínimo la capacidad secundario-tierra.

(Recibido: Marzo 1961)

4 Nº 4 - Construcción de una balanza de precisión.

R. Valverde.

Trabajo realizado como estudiante del curso de Física.

Se construyó una balanza de precisión totalmente a partir de materiales comunes y sin emplear herramientas especializadas. Su apreciación, 0,1 mg., y las demás características son similares a las de las demás balanzas químicas comunes. Tiene un sistema de comando "remoto" del caballero desde la parte inferior de la caja.

(Recibido: Marzo 1961)

5 Nº 5 - Construcción de dos galvanómetros.

R. Valverde.

Trabajo realizado como estudiante del curso de Física.

Se construyeron dos galvanómetros partiendo de materiales comunes. Ambos son de bobina móvil, con suspensión doble y espejo, teniendo uno de ellos, además, aguja. La sensibilidad es del orden de 10-sA y las resistencias de 100 y 300 ohm aprox.

(Recibido: Marzo 1961)

6 Nº 6 - Construcción de un cronósforo.

R. Valverde.

Se trata de un aparato destinado a abrir y/o cerrar circuitos eléctricos en tiempos predeterminados, mediante un sistema de papeles recortados. La precisión es de 1 o 2 seg. para programas de algunas horas, y de 1 min. para duraciones mayores.

(Recibido: Marzo 1961)