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Abstract: Zika virus has spread around the world with rapid pace in the last five years. Although
symptoms are typically mild and unspecific, Zika’s major impact occurs during pregnancy, generating
a congenital syndrome. Serology plays a key role in its diagnosis. However, its use is limited due
to the uncertainty caused by the cross-reaction of antibodies elicited in response to other flavivirus
infections when tested in direct immunoassays. Using a panel of previously generated anti-Zika
non-structural protein 1 (NS1) nanobodies, a set was selected that only recognizes epitopes present
in Zika and is immunogenic to humans. A proper arrangement of these nanobodies was made and
conditions were optimized in order to develop a novel serology assay. This new ELISA relies on the
inhibition of the binding of a set of selected nanobodies to Zika-immobilized NS1 when previously
incubated with Zika convalescent sera. Using the developed blocking of binding assay, it was possible
to discriminate between Zika-specific and cross-reactive antibodies in serum samples from infections
with Zika and other flaviviruses.
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1. Introduction

Zika virus (ZIKV) was reported for the first time in Uganda in 1947 and remained
almost unnoticed until two major outbreaks took place in French Polynesia and Brazil
in 2013 and 2015, respectively [1–4]. Shortly after that, ZIKV rapidly disseminated and,
according to the World Health Organization (WHO), nowadays, it affects more than 80
countries around the globe. ZIKV is an arbovirus from the Flaviviridae family and its main
route of transmission is by infected Aedes spp. mosquito bites. However, it can also spread
via sexual contact and is vertically transmitted from the mother to the fetus [5,6]. As a
neurotropic virus, it has been associated with Guillian Barré Syndrome in adults and during
pregnancy with neurological birth defects, collectively known as Congenital Zika Syndrome
(CZS) [7]. The method of choice for the diagnosis of acute ZIKV infection is the detection of
viral RNA present in the blood by real-time polymerase chain reaction (RT_PCR) [8]. As
the viraemia in blood is short-lived (5–7 days), the detection of IgM and IgG antibodies is
the most suitable method for diagnosis in the convalescent phase. Due to the high level
of similarity among flaviviruses, considerable immunological cross-reactivity has been
observed between them [9]. Thus, false-positive anti-ZIKV reactions might be common in
regions where Flavivirus infections overlap [10,11]. Flavivirus serology assays are generally
based on the detection of antibodies against structural antigens, mostly the envelope
protein E. However, structural proteins are highly conserved; thus, the antibodies generated
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against these proteins present a significant degree of cross-reactivity, leading to a poor
diagnosis [11,12]. Solving this problem is critical to count on dependable serological tests
for ZIKV infection diagnosis to monitor the general population seroprevalence, especially
in pregnant women. Moreover, it is relevant to measure the incidence of CZS among
this particular population as well as to identify other possible neurological complications
associated with this infection [13]. Therefore, the development of serology methods that
could unequivocally diagnose ZIKV in flavivirus-endemic settings is of extreme importance.

The Non-Structural 1 (NS1) protein is less conserved among flaviviruses; thus, it has
been proposed as a more reliable diagnostic biomarker. NS1 induces a strong IgG response
and seroconversion occurs as early as 5–8 days after initial symptoms [14,15]. However,
despite its lower identity with other viral NS1, several studies have shown that current anti-
ZIKV antibody assays using this antigen, while highly sensitive, do not reliably distinguish
among flavivirus infections, mostly due to the great extent of cross reactivity observed
with serum samples from Dengue virus (DV)-infected patients [16,17]. To overcome this,
Balmaseda et al. used a human monoclonal antibody, previously shown to define a specific
NS1 ZIKV epitope to develop an inhibition of binding assay, and they could efficiently
distinguish ZIKV from other flaviviruses. This ELISA works by comparing the binding of
the selective antibody to the immobilized ZIKV NS1 in the presence or absence of infected
patient’s sera, as illustrated in Figure 1 [18]. While this represents great progress in the
serodiagnosis of Zika infection, a limitation of this assay is the use of a specific anti-ZIKV
antibody. The availability of antibodies with similar specificity and known published
sequences will make this method reproducible in any laboratory to facilitate and extend
the use of this diagnostic format.
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Figure 1. The Non-Structural 1 (NS1) protein from Zika and other flaviviruses (OFV) has some unique
epitopes (A, B and A′, B′, respectively) and shares others (represented by C). For the development of
a blocking of binding assay, the competing antibodies need to fulfill two conditions: they must react
with a ZIKV NS1-specific epitope and that epitope must be immunogenic in human infections with
the virus. In the scheme, antibody NbA and NbB do react with unique epitopes, but NbB recognizes
an epitope that is not immunogenic in humans and, therefore, there are no blocking antibodies in the
serum of the infected patients. Hence, only NbA is suited to develop a blocking of binding assay.

The recombinant fragment (nanobodies) derived from the variable domain (VHH) of
heavy-chain-only antibodies, found in camelids, has salient biotechnological properties
and can be readily reproduced from sequences [19]. These antibodies possess numerous
advantages for immunoassay development compared to conventional antibodies, such
as high soluble expression levels, small size, excellent thermal stability, simple genetic
manipulation, among others [20–22]. In the past, we developed high-throughput methods
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for the generation and selection of nanobodies (Nbs) for sensitive detection of biomarkers
in complex matrixes [23,24]. Recently, we developed a large panel of Nbs to ZIKV NS1
and selected pairs of Nbs that allow for the sensitive detection of the antigen in serum
samples [25]. In the present study, this panel was further tested to select Nbs defining ZIKV
NS1-specific epitopes that can be used in inhibition assays to differentiate ZIKV human
infections. Using these antibodies, a blocking of binding ELISA was generated where the
binding of nanobodies is strongly inhibited when the antigen is previously incubated with
Zika convalescent sera, but not if incubated with other anti-flavivirus sera, thus, allowing
for the specific diagnosis of this infection. Furthermore, since these Nbs can be produced
recombinantly using the provided sequence, they can be used to develop highly specific,
low-cost in-house blocking of binding ELISAs for the reliable detection of ZIKV infections.

2. Materials and Methods
2.1. Materials

ZIKV NS1 protein as well as NS1 from other flaviviruses, including Dengue 1 (DV1),
Yellow Fever (YFV) and Saint Louis (SLV), were purchased from The Native Antigen
Company, Inc. (Oxford, UK). ELISA strips and plates (Greiner Bio-One, Monroe, NC,
USA). Peroxidase-conjugated streptavidin was obtained from Thermofisher (Rockford, IL,
USA). Other conjugated antibodies were acquired from Abcam (Cambridge, MA, USA).
3,3′,5,5′-D-biotin was from Amresco (Wayne, PA, USA). Tetramethylbenzidine (TMB) and
other common chemicals were purchased from Sigma-Aldrich (Mississauga, CA, USA).

The WHO 1st international standard (IS) for anti-Asian linage ZIKV antibody (IS
16_352), the Standard Reagents for anti-ZIKV antibody IS 16_320 and sample16_328, conva-
lescent serum pool from recovered ZIKV-infected patients were obtained from the National
Institute for Biological Standards and Control, UK. RT-PCR and serology confirmed serum
samples from patients infected with different flaviviruses, including ZIKV (n = 3), Dengue
(DV, n = 11), Yellow Fever (YFV, n = 8) and Saint Louis (SLV, n = 5), were remnant diagnostic
samples provided by the Uruguayan Ministry of Health. Samples from healthy donors
from a non-endemic flavivirus zone were available from previous studies. All samples
were de-identified and processed following the recommendations of the Comisión de Ética
en la Investigación con Seres Humanos of the Facultad de Química, UDELAR.

The nanobodies used in this study have been extensively described by Delfin-Riela
et al. 2020 and their amino acid sequences are published [25].

2.2. Evaluation of Direct ELISA for Antibodies Detection of Flavivirus Immune Sera

ELISA plates were coated with 100 µL (200 ng/mL) of ZIKV NS1 overnight (ON) at
4 ◦C. Plates were washed with PBS-0.05% Tween 20 (PBS-T) and blocked with PBS-1%
bovine serum albumin (BSA) for 1 h (1 h) at room temperature (RT). After washing, each
plate was incubated for 1 h with the flavivirus, 1/500 diluted, immune serum. A set of
naïve sera was also included as a negative control. After washing, 100 µL of a mix of anti-
IgG:HRP and anti-IgM:HRP at manufacturer’s recommended concentration was loaded
and incubated for 1 h at RT. Finally, plates were washed with PBS-T, and TMB substrate
was added for ten minutes. The enzyme reaction was stopped by addition of 50 µL of 2N
H2SO4 and the optical density (OD) was then measured at 450 nm with a Fluostar Optima
Reader (BMG, Ortenberg, Germany).

2.3. Selection of Nanobodies: Binding Inhibition and Cross-Reactivity Evaluation

High-binding polystyrene plates were coated with 200 ng/mL of ZIKV NS1 in PBS,
ON at 4 ◦C. Plates were blocked with PBS-1% BSA for 1h at RT and then washed with PBS-T.
One hundred microliters of ZIKV serum standards diluted with PBS (1/20, 1/40 for 16-352,
and 1/80 for 16-320 and 16-328) or PBS (blank) was added and incubated for 1 h at RT.
After washing with PBS-T, the plates were loaded with 100 µL of 10 biotinylated anti-NS1
Nbs for 1 h at RT. The Nb concentrations (5.0 to 12 ng/mL) were previously selected as
the amount of Nb capable of generating an OD 450 nm of 1UA when exposed to ZIKV
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NS1. Plates were washed with PBS-T, and peroxidase-conjugated streptavidin was added
and incubated for 1 h at RT. Finally, plates were washed with PBS-T and TMB substrate
was added for ten minutes. The enzyme reaction was stopped by addition of 50 µL of 2N
H2SO4 and OD 450 nm was then measured. The percentage of Binding Inhibition (%BI)
was calculated as follows: %BI = [1 − (OD sample/OD PBS)] × 100, where OD PBS is the
absorbance of the blank.

For the cross-reactivity study, the procedure was identical to that described above but
using flavivirus convalescent serum pools instead of the anti-ZIKV standard. The obtained
%BI was compared to that attained with the IS 16_352 standard.

2.4. Optimization of the ELISA

High-binding polystyrene plates were coated with 200 ng/mL of ZIKV NS1 in PBS,
ON at 4 ◦C. Plates were blocked with PBS-1% BSA for 1 h at RT and then washed with
PBS-T. Hundred µL of serial dilutions, starting from 1/20 of the three standard sera, was
incubated for 1 h at RT. After washing with PBS-T, the pool of Nbs (consisting of equal
amounts of each antibody) was added and incubated for an additional 1 h at RT. Plates
were washed with PBS-T and Stp-HRP was added and incubated for 1 h at RT. Finally, the
reaction was developed as mentioned above. The working dilution was defined as the
one that produces a high %BI (over 50%) and does not show any inhibition with negative
samples. Using a fixed dilution (1/40) of standards 16-328 and 16-352, a variant of the assay
was performed. In this case, the incubation of the pool of sera and the Nbs was performed
simultaneously. The remaining steps were equally performed as described above.

The cut-off point of the assay was estimated as the mean %BI obtained from 98 ZIKV-
negative samples tested in the Nb-BI ELISA, plus 3 standard deviations.

Cross-reactivity of the Inhibition ELISA was determined using individual flavivirus
immune serum samples from patients infected with DV, SLV and YFV. Individual samples
from ZIKV-positive patients and anti-ZIKV standard sera were also performed in the same
conditions as mentioned above. The %BI achieved by ZIKV-positive and ZIKV-negative
samples was compared to the cut-off value.

2.5. Study of Intra-Assay and Inter-Assay Reproducibility

The precision of the method was evaluated by calculating the coefficient of variation
(CV) using the IS 16_352 standard, processed at a dilution of 1/40. Intra-assay variation
was calculated by making five replicates of the standard in the same day. The inter-
assay variability was calculated by testing the standard in quintuplicates, during five
consecutive days.

3. Results
3.1. Election of Nanobodies: Binding Inhibition and Cross-Reactivity Evaluation

In spite of the fact that the NS1 proteins are less conserved among flaviviruses than
structural proteins, there is a large extent of cross-reactivity when a convalescent serum
infected with a non-ZIKV flavivirus is tested directly against ZIKV NS1. This behavior was
demonstrated by the evaluation of the reactivity of anti-DV, anti-YF and anti-SLV serum
against ZIKV NS1 immobilized on the solid phase (see Supplementary Figure S1). This is
mainly due to the ability of antibodies to recognize conserved epitopes of the NS1 shared
among flaviviruses. One possibility to overcome this drawback is to devise a blocking
of binding test. As shown by Balmaseda et al., this can be carried out by studying the
binding inhibition (%BI) of a monoclonal antibody that selectively targets ZIKV epitopes,
in the presence or absence of the patient serum [18]. We recently generated a large panel of
Nbs against ZIKV NS1 with negligible cross-reactivity for DV1, SLV, YFV and West Nile
virus [25]. Eleven of these Nbs (22, 212, 246, 278, 32, 38, 326, 340, 345, D6 and H3) were
chosen with the purpose of developing a blocking of binding test. To this aim, in the first
place, Nbs were further selected according to their capability of being inhibited by human
anti-ZIKV antibodies. This was tested using the WHO anti-ZIKV standard serum IS 16_352.
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Previously, the Nbs were titrated against ZIKV NS1 protein and an optimal concentration
corresponding to an optical density (OD) of 1.0 UA was selected for each of them (data not
shown). The extent of binding inhibition caused by the standard serum in these conditions
is shown in Figure 2. As can be observed, the Nbs 38, D6, 326 and 345 were not inhibited by
the reference serum. Considering that this standard consists of a pool of several human sera,
it may indicate that these Nbs define epitopes that are not immunogenic in human ZIKV
infections and, therefore, were excluded. Conversely, the rest of the Nbs showed a relevant
degree of inhibition, up to 80% at the highest standard concentration (1/20). To test if this
response is affected by the particular immune response of the patients included in IS 16_352,
two different anti ZIKV NS1 reference sera were assayed in a similar experiment and no
significant difference was found (see Supplementary Figure S2). This fact implies that the
selected Nbs were inhibited by anti-ZIKV serum samples with different characteristics,
such as region and time of infection, among others.
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Figure 2. Inhibition achieved over different nanobodies by anti-Zika standard serum. Nanobodies
were challenged with three dilutions of WHO IS 16_352 standard and with a pool of naïve sera (1/20
diluted). The percentage of binding inhibition for each Nb is shown. Measurements are the average
of duplicates.

Next, we tested whether the antibodies present in the serum of patients infected with
other flaviviruses were able to inhibit the binding of the selected Nbs. To this end, ZIKV
NS1 was incubated with various flavivirus convalescent serum pools and naïve serum
(Figure S3). The %BI for each Nb was calculated and compared to that obtained with the
anti-ZIKV standard IS 16_352, Figure 3. As observed, NbH3 showed a moderate cross-
reactivity with other flavivirus serum pools. This Nb had to be discarded because, despite
lacking reactivity against DV1, WNV, YFV and SLV NS1, it seems to define an epitope that
partially overlaps with the region of ZIKV NS1 recognized by antibodies present in patients
affected by other flavivirus infections.

Next, we studied whether the remaining Nbs, 22, 246, 278, 32, 340 and 212, defined
unique or overlapping epitopes. No complementarity was found for any of their all-against-
all pairwise combinations in two-site ELISA (data not shown). Considering that there are
considerable differences in their complementary-determining region (CDR) sequences,
most probably, they react with largely overlapping but not identical epitopes (see Supple-
mentary Figure S4). Moreover, these Nbs appear to target a region of ZIKV NS1 that is
highly immunogenic, both in the immunized llama and ZIKV patients, but does not lead to
the generation of cross-reactive antibodies in infections with other flaviviruses. For this
reason, we decided to set up our inhibition test using a pool of these six Nbs (consisting of
equal amounts of each Nb).
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3.2. Optimization of Inhibition ELISA

To determine the appropriate dilution to process the samples, inhibition curves were
performed using the three anti-ZIKV standards, Figure 4. As observed, even with a
1/1280 dilution, there was detectable inhibition for all three WHO international standards.
Considering that no significant inhibition was observed with the pool of negative sera, we
selected 1/40 as working dilution in order to maximize the specificity. Once an appropriate
dilution was set, aiming to maximize the inhibition effect, we analyzed the effect of the
order in which serum and Nbs were added. Sequential and simultaneous additions were
compared, using two different anti-ZIKV standards. As expected, pre-incubation of the
immobilized antigen with the patient serum achieved a significant improvement in the %BI,
about 20%, compared to the simultaneous incubation of the patient serum and nanobodies,
avoiding competition (see Supplementary Figure S5).
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were made in duplicates. 16_352 (squares), 16_320 (diamonds) and 16_328 correspond to WHO
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Once the conditions to perform the test were established, an available panel of anti-
ZIKV and other flavivirus convalescent sera was used to evaluate its diagnostic potential,
Figure 5. First of all, an estimation of a cut-off value was calculated as the average inhibition
percentage of 98 negative sera plus three standard deviations, resulting in 32%. By using
this cut-off value, all non-Zika samples (n = 24) and 97/98 true-negative sera were classified
as negatives. Likewise, the six ZIKV true-positive sera tested were also correctly classified
as positive. Among these, it is interesting to highlight that one of the ZIKV-positive samples,
which was collected barely 10 days after symptom onset when antibodies are just starting
to appear, was also above the cut-off value. Hence, the developed assay, by introducing a
set of competitive Nbs selective for a human-immunogenic ZIKV NS1 epitope, was able to
overcome the cross-reactivity limitations faced by the direct antibody-detection approach
(compare to Figure S1). This is especially relevant in areas where more than one virus of
this family co-circulates, where the antibodies generated by a past infection against another
flavivirus could recognize a ZIKV NS1.

Trop. Med. Infect. Dis. 2023, 7, x FOR PEER REVIEW 8 of 10 
 

 

 
Figure 5. Inhibition achieved by flavivirus convalescent sera. Samples of Yellow Fever Virus (YFV), 
Dengue Virus (DV), Saint Louis Virus (SLV) and Zika Virus (ZIKV) as well as naïve sera were 
examined in duplicates. 

3.3. Study of the Intra-Assay and Inter-Assay Reproducibility 
The precision of the method was evaluated by testing the IS 16_352 NIBSC standard 

in quintuplicates on the same day (intra-day precision) and five different days (inter-day 
precision), Table 1. In both cases, the coefficient of variation in percentage (CV%) was in 
accordance with the acceptance criteria (CV < 20%) recommended for clinical assays [26]. 

Table 1. Precision parameters. 

 Intra-Day Precision Inter-Day Precision 
Replicates 5 5 
Mean Value (% inhibition) 68 65 
CV% 2.7 7.7 
NIBSC standard IS 16-352 was used at a dilution of 1/40. 

4. Conclusions 
The development of antibody-detection methods that could unequivocally diagnose 

ZIKV in flavivirus-endemic settings is of extreme importance. Blocking of binding tests 
represent major progress in the diagnosis of flavivirus disease because they overcome the 
limitation caused by the presence of cross-reactive antibodies commonly detected by di-
rect tests. The aim of this study was to identify nanobodies to ZIKV-specific epitopes that 
could be used to produce a blocking of binding test. As starting point, a panel of ten 
ZIKV NS1-specific nanobodies was used, but interestingly, not all of them turned out to 
be useful. Indeed, the binding of four of these clones was not blocked by the antibodies 
present in ZIKV patient sera, which demonstrates that the antibodies used as probes for 
diagnostic inhibition tests should address epitopes that are immunogenic in ZIKV infec-
tions. In addition, another Nb had to be discarded because, despite lacking reactivity 
against DV1, WNV, YFV and SLV NS1, it seems to define an epitope that partially over-
laps with the region of ZIKV NS1 recognized by antibodies present in patients affected by 
other flavivirus infections. Finally, the remaining six nanobodies that differ strongly in 
their CDR sequences appear to target a region of ZIKV NS1 that was highly immuno-
genic, both in the immunized llama and, more importantly, in ZIKV patients, but which 
is not recognized by antibodies raised by infections with other flaviviruses. Although, a 
large serum panel was not available at the time of this study, using the selected nano-

Figure 5. Inhibition achieved by flavivirus convalescent sera. Samples of Yellow Fever Virus (YFV),
Dengue Virus (DV), Saint Louis Virus (SLV) and Zika Virus (ZIKV) as well as naïve sera were
examined in duplicates.

3.3. Study of the Intra-Assay and Inter-Assay Reproducibility

The precision of the method was evaluated by testing the IS 16_352 NIBSC standard
in quintuplicates on the same day (intra-day precision) and five different days (inter-day
precision), Table 1. In both cases, the coefficient of variation in percentage (CV%) was in
accordance with the acceptance criteria (CV < 20%) recommended for clinical assays [26].

Table 1. Precision parameters.

Intra-Day Precision Inter-Day Precision

Replicates 5 5
Mean Value (% inhibition) 68 65
CV% 2.7 7.7

NIBSC standard IS 16-352 was used at a dilution of 1/40.
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4. Conclusions

The development of antibody-detection methods that could unequivocally diagnose
ZIKV in flavivirus-endemic settings is of extreme importance. Blocking of binding tests
represent major progress in the diagnosis of flavivirus disease because they overcome
the limitation caused by the presence of cross-reactive antibodies commonly detected by
direct tests. The aim of this study was to identify nanobodies to ZIKV-specific epitopes
that could be used to produce a blocking of binding test. As starting point, a panel of ten
ZIKV NS1-specific nanobodies was used, but interestingly, not all of them turned out to
be useful. Indeed, the binding of four of these clones was not blocked by the antibodies
present in ZIKV patient sera, which demonstrates that the antibodies used as probes
for diagnostic inhibition tests should address epitopes that are immunogenic in ZIKV
infections. In addition, another Nb had to be discarded because, despite lacking reactivity
against DV1, WNV, YFV and SLV NS1, it seems to define an epitope that partially overlaps
with the region of ZIKV NS1 recognized by antibodies present in patients affected by other
flavivirus infections. Finally, the remaining six nanobodies that differ strongly in their CDR
sequences appear to target a region of ZIKV NS1 that was highly immunogenic, both in the
immunized llama and, more importantly, in ZIKV patients, but which is not recognized
by antibodies raised by infections with other flaviviruses. Although, a large serum panel
was not available at the time of this study, using the selected nanobodies, it was possible to
set up a sensitive test that specifically discriminates ZIKV from other flavivirus infections
in an unequivocal manner. In addition, given that nanobodies are perpetuated in silico,
laboratories can reproduce them from their sequence in an affordable and standardized
fashion, opening the opportunity for local developments, which, after further validation,
will help to build diagnostic capacity for this infection, even in low-resource settings.
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