
Citation: Torres, J.; González-Platas,

J.; Kremer, C. Lanthanide(III)

Complexes with Thiodiacetato

Ligand: Chemical Speciation,

Synthesis, Crystal Structure, and

Solid-State Luminescence. Crystals

2023, 13, 56. https://doi.org/

10.3390/cryst13010056

Academic Editor: László Kovács

Received: 8 December 2022

Revised: 21 December 2022

Accepted: 24 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Lanthanide(III) Complexes with Thiodiacetato Ligand:
Chemical Speciation, Synthesis, Crystal Structure, and
Solid-State Luminescence
Julia Torres 1 , Javier González-Platas 2 and Carlos Kremer 1,*

1 Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República,
Montevideo 11800, Uruguay

2 Departamento de Física, Instituto Universitario de Estudios Avanzados en Física Atómica, Molecular y
Fotónica (IUDEA), MALTA-Cosolider Team, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain

* Correspondence: ckremer@fq.edu.uy

Abstract: The synthesis, crystal structures, and luminescence of two lanthanide polynuclear com-
plexes with the general formula [Ln2(tda)3(H2O)5]·3H2O (Ln = Sm, Eu; tda = thiodiacetato anion) are
reported. The compounds were obtained by direct reaction of H2tda and lanthanide(III) chloride in
an aqueous solution. The choice of the conditions of synthesis was based on speciation studies. The
structure of the polymeric complexes contains Ln(III) ions in a tricapped trigonal prism geometry. The
versatility of this ligand provides different coordination modes and provokes the formation of thick
2D sheets. Direct excitation of the Ln(III) ions gives place to the characteristic intra-configuration
sharp luminescence emission of both complexes in the solid state.
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1. Introduction

The study of lanthanide(III) (Ln) coordination compounds has elicited considerable
interest in the last decades [1–4]. Different coordination numbers and geometries can give
place to novel and interesting crystal structures. In addition, they have great potential as
functional solid materials such as luminescent materials [5], magnetic devices [6], chemical
sensors [7,8], etc. We and other groups have been interested in Ln(III) mononuclear and
polynuclear complexes with ligands of type X-(CH2-COO)2

2−, where X = O (oxydiacetato,
oda2−), NH (iminodiacetato, ida2−) or S (thiodiacetato, tda2−) [9]. Oxydiacetato, the
most deeply studied ligand of this group, appears as the most suitable ligand for Ln ions
because of the presence of three O donor atoms in its structure. Hence, many complexes
were already reported and characterized [9–13]. The thermodynamic stability of Ln-oda
complexes also allows the use of the tris-chelate ([Ln(oda)3]3−) as a complex-as-ligand
block towards M(II) cations [9,14]. The resulting heteropolynuclear compounds were
assayed as catalysts [15,16], white-light emitters [17], and proton conductive MOF-based
materials [18]. Iminodiacetato, with an N atom in the center, has also been studied, but to a
lesser extent [9]. Substitution of O in oda by N in ida provokes a poorer participation of N
in the coordination [14,19], which has hindered the isolation of tris-chelates.

Thiodiacetato is the less explored member of this series of ligands. The combination
of O-carboxylate (hard donor atom) with sulfur (soft donor atom) makes the chemistry
of this ligand very versatile and, at the same time, very challenging. Several structural
reports show its capacity to act as a tridentate ligand towards Cu(II) [20–23], Ni(II) [24–29]
Co(II) [30–36], Mn(II) [37], Zn(II) [38–40], Cd(II) [41], Mg(II) [42], Re(V) [43], V(IV) [44], and
Ru(III) [45]. However, only one report can be found containing a bis-chelated fragment in
a mononuclear compound [32], namely, (pipH2)[Co(tda)2]·2H2O (pipH2

2+ = piperazine
dication). The other structures always contain a coligand. The possibility of acting as
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a bidentate ligand (O,O or O,S) for these metal ions is restricted to a few cases [46,47].
Thiodiacetato ligand also exhibits the possibility of forming a bridge between metal ions,
yielding polynuclear complexes. This can be found in structures with Cu(II) [20,48–50],
Mn(II) [37,49,51], and Zn(II) [52–54].

Coordination compounds of tda with Ln ions are even less frequent. Anionic isolated
tris-chelates have been reported in (H2Gun)3[Ln(tda)3] (Ln = Pr, Nd, HGun = guanidinium,
C(NH2)3

+) [55]. In these structures, tda acts as bidentate through two O-carboxylate atoms,
forming an 8-membered ring. S atom is 3.423 Å apart from Ln ion and does not participate
in the coordination sphere. Another report presents a polynuclear compound with the
formula [Nd(tda)(H2O)4]Cl [56]. In this compound, tda acts as tridentate and additionally
bridges Nd ions through carboxylate groups. A zigzag chain is formed. Nd(III) also
forms an anionic 2D network in the complex Na[Nd(tda)2], in which the S atom is not
coordinated, and the coordination sphere is filled only by O atoms from tda [57]. The
structure of (pipH2)[Ce2(tda)4(H2O)2]·3H2O is also a 2D anionic structure [58]. Finally,
other groups of 2D polynuclear structures can be found. In [Ln2(tda)3(H2O)2]n (Ln = La,
Sm, Gd, Nd, Pr, Tb, Dy, Eu), tda acts as bidentate and also as a ditopic ligand. The S atom
seems to participate in the coordination but at a rather long distance [59–63].

In order to increase the knowledge of tda as a ligand towards Ln ions, we have
revisited the solution chemistry of the systems by potentiometry and prepared, under
mild reaction conditions, complexes with the general formula [Ln2(tda)3(H2O)5]·3H2O
(Ln = Sm (1), Eu (2)). They show a new 2D structural arrangement. Solid-state luminescent
properties were also studied.

2. Materials and Methods

All chemicals were reagent grade, purchased from commercial sources, and used
without purification. LnCl3·6H2O (Ln = Sm, Eu, 99.9% from Sigma-Aldrich, Burlington,
MA, USA) were used as metal sources. Potentiometric measurements were carried out
using an automatic titrator Mettler-Toledo DL50-Graphix. Elemental analyses (C, H, and S)
were performed on a Thermo FLASH 2000 CHNS/O Analyzer instrument. Infrared spectra
were collected as KBr pellets on an FTIR Shimadzu IR-Prestige-21 spectrophotometer from
4000 to 400 cm−1. Thermogravimetric analyses (TGA) were carried out on a Shimadzu
TGA-50 instrument with a TA 50I interface, using a platinum cell and nitrogen atmosphere;
the experimental conditions were 0.5 ◦C min−1 temperature ramp rate and 50 mL min−1

nitrogen flow rate (pure nitrogen was used, water content was less than 3 ppm). Lumines-
cence spectra were recorded from solid crystalline samples using a SHIMADZU RF-5301Pc
spectrofluorometer.

2.1. Equilibrium Studies

The standard HCl and NaOH solutions were prepared by diluting Merck standard
ampoules. Acid and base stock solutions were standardized against sodium carbonate and
potassium hydrogen phthalate, respectively. All solutions were prepared with analytical-
grade water (18 µS cm−1) and were freed of carbon dioxide by bubbling with argon.
NaClO4·H2O (Sigma-Aldrich 98%) was used to adjust the ionic strength of all solutions to
0.15 mol·L−1. The temperature was kept at 25.0 (±0.1) ◦C. The protonation constants of
tda2− were determined by two potentiometric titrations (ca. 150 experimental points each)
in the interval 1–8 mmol·L−1. The behavior of the ligand in the presence of either Sm(III) or
Eu(III) was then analyzed through three potentiometric titrations (ca. 100–150 experimental
points each) at ligand to Ln(III) total molar ratios varying from 1:1 to 3:1. The pH interval
from 2.0 to the precipitation of solid Ln(OH)3 in the alkaline region was covered.

In a typical experiment, after thermal equilibrium was reached, hydrogen ion con-
centrations were determined by successive readings, each performed after an incremental
addition of standard 0.1 mol·L−1 NaOH solution. Equilibrium attainment after each titrant
addition was verified by controlling the deviation of successive e.m.f. readings. Indepen-
dent stock solutions were used to check reproducibility. The cell electrode potential E◦
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and the acidic junction potential were determined [64] from independent titrations of the
strong acid with the titrant solution. The calibration in the alkaline range was checked by
recalculating Kw values for each system. The obtained values (average log10 Kw = 13.7)
were checked to be in line with previously reported data under the same experimental
conditions [65]. The formation constant of soluble hydroxo species of Ln(III) was taken from
a previous report [66] and was included in the input for the calculation of the formation
constants. Further details on data analysis can be found elsewhere [67].

2.2. X-ray Data Collection and Structure Refinement

X-ray diffraction data on single crystals 1 and 2 were collected with an Agilent Su-
perNOVA diffractometer with microfocus X-ray using Mo Kα radiation (λ = 0.71073 Å).
CrysAlisPro [68] software was used to collect, index, scale and apply a numerical absorption
correction based on Gaussian integration over a multifaceted crystal model. The structures
were solved using ShelXT [69] program using dual methods and refined by full-matrix
least-squares minimization on F2 using ShelXL [70] software. All non-hydrogen atoms were
refined anisotropically. Hydrogen atom positions were calculated geometrically and refined
using the riding model. The geometrical analysis of the interactions in the structures was
performed with PLATON [71] and Olex2 [72] programs. Crystal data, collection procedures,
and refinement results are summarized in Table 1.

Table 1. Crystallographic data and structure refinements for compounds 1 and 2.

Compound 1 2

Formula C12H28O20S3Sm2 C12H28O20S3Eu2
Dcalc./g cm−3 2.231 2.250
µ/mm−1 4.715 5.042
Formula Weight 889.22 892.44
Colour colorless colorless
Shape block-shaped irregular-shaped
Size/mm3 0.17 × 0.09 × 0.07 0.07 × 0.06 × 0.04
T/K 293(2) 293(2)
Crystal System triclinic triclinic
Space Group P-1 P-1
a/Å 9.0767(3) 9.0706(3)
b/Å 12.1931(4) 12.1653(3)
c/Å 13.3940(4) 13.3578(5)
a/◦ 63.274(3) 63.364(3)
b/◦ 88.730(2) 88.684(3)
g/◦ 88.545(2) 88.508(3)
V/Å3 1323.47(8) 1317.01(8)
Z 2 2
Z′ 1 1
Wavelength/Å 0.71073 0.71073
Radiation type Mo Ka Mo Ka
θmin/◦ 1.702 1.706
θmax/◦ 28.282 32.043
Measured Refl’s. 13,613 17,246
Indep’t Refl’s 6556 8441
Refl’s I ≥ 2 σ(I) 5914 6900
Rint 0.0189 0.0276
Parameters 414 407
Restraints 0 0
Largest Peak 0.687 0.951
Deepest Hole −0.822 −0.920
GooF 1.055 1.035
R1 (all data) a 0.0267 0.0449
R1

a 0.0227 0.0323
wR2 (all data) b 0.0538 0.0653
wR2

b 0.0518 0.0605
a R1 = Σ||F0| − |Fc||/Σ|Fc|, b wR2 = {Σ[w(F0

2 − Fc
2)2]/Σ[w(F0

2)2}1/2.
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Crystallographic data for the structures reported in this contribution have been de-
posited with the Cambridge Crystallographic Data Centre as supplementary publication
2224921-224922. Copies of the data can be obtained free of charge on application to the
CCDC, Cambridge, U.K. (http://www.ccdc.cam.ac.uk/).

2.3. Synthesis of [Ln2(tda)3(H2O)5]·3H2O (Ln = Sm (1), Eu (2))

1.35 mmol (0.203 g) of H2tda and 0.45 mmol of LnCl3·6H2O (0.164 (1), 0.165 (2) g) were
dissolved in 10 mL of water at room temperature with continuous stirring. Then, the pH of
the solution was adjusted to ca. 3.3 with aqueous 0.5 M NaOH. If a small amount of a white
solid remained at this point, it was filtered through paper and discarded. The clear solution
was allowed to evaporate slowly. After 10 days, a crystalline material was formed, filtrated,
washed with two portions of 1 mL of water, and air-dried. Some crystals were suitable
for single-crystal X-ray diffraction analysis. Yield: 52% (1), 61% (2). Elemental analysis
(%) Calcd. for 1, C12H28Sm2O20S3: C, 16.21; H, 3.17; S, 10.82. Found: C, 16.55; H, 3.00; S,
11.09. Calcd. for 2, C12H28Eu2O20S3: C, 16.15; H, 3.16; S, 10.78. Found: C, 16.42, H, 2.81, S,
11.03. Found: C, 16.42, H, 2.81, S, 11.45. IR (KBr, cm−1): main signals are almost identical
for compounds 1 and 2: 3598(m), 3518(m), 3362(s), 2984(m), 2918(m), 1595(sh), 1564(vs),
1426(s), 1383(s), 1229(s), 1217(w), 1157(m), 1130(m), 962(w), 952(m), 918(m), 899(m), 733(m),
721(m), 710(m), 605(s), 463(m).

3. Results
3.1. Solution Studies

For a rational design of the synthetic procedure, the first step of the study was to
look at the Ln(III)-tda systems in solution at room temperature and low ionic strength
since previously reported data were not conclusive about the species formed, especially
in the acid interval in which protonated species were detected by some authors but not
by others (Table S1). Protonation equilibrium constants of the ligand (Table 2) were also
redetermined under identical conditions: 0.15 mol·L−1 NaClO4 at 25.0 ◦C. The obtained
results for the protonation constants are in total agreement with previous reports under
similar conditions [65,73,74]. With these results and the previously reported hydrolysis
constants of the Ln(III) ions under similar conditions [66], the stability constants of the
species Ln(III)-tda were determined. This is also shown in Table 2. Only cationic species
1:1 ([Ln(tda)]+ and [Ln(Htda)]2+) and the anionic species 1:2 (Ln(tda)2]−) were detected in
solution, with similar stability constant values for Sm(III) and Eu(III). It is interesting to
compare the stability constants of tda species with those for oda and ida (some of them
are also included in Table 2). A close inspection of log10 K values shows that Ln(III)-tda
species are much less stable than the analogous complexes with oda or ida. The change of
O or N by S as a donor atom represents a loss of stability in the coordination compounds of
lanthanide(III) ions.

Table 2. Logarithm of the acid-base and complexation equilibrium constants determined in this work
in 0.15 mol·L−1 NaClO4 at 25.0 ◦C. H2tda represents the fully protonated neutral form of thiodiacetic
acid. Values given in parentheses are the 1σ statistical uncertainties in the last digit of the determined
constant values. Selected stability constants for analogous oda and ida complexes (again, H2oda and
H2ida represent the fully protonated neutral forms) were taken from selected reported data under
similar experimental conditions.

Equilibrium log10 K σ

tda2− + H+ → Htda- 4.23(1)
1.3

tda2− + 2H+ → H2tda 7.28(2)

Sm3+ + tda2− → [Sm(tda)]+ 2.94(4)

0.7Sm3+ + 2tda2− → [Sm(tda)2]− 5.16(6)

Sm3+ + H+ + tda2− → [Sm(Htda)]2+ 6.28(5)

http://www.ccdc.cam.ac.uk/
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Table 2. Cont.

Equilibrium log10 K σ

Eu3+ + tda2− → [Eu(tda)]+ 3.06(1)

0.4Eu3+ + 2tda2− → [Eu(tda)2]− 5.96(5)

Eu3+ + H+ + tda2− → [Eu(Htda)]2+ 5.7(2)

oda Ref.

Sm3+ + oda2− → [Sm(oda)]+ 5.64 [75]

Sm3+ + 2oda2− → [Sm(oda)2]− 9.62 [75]

Eu3+ + oda2− → [Eu(oda)]+ 5.53 [76]

Eu3+ + 2oda2− → [Eu(oda)2]− 10.04 [76]

ida

Sm3+ + ida2− → [Sm(ida)]+ 5.914 [14]

Sm3+ + 2ida2− → [Sm(ida)2]− 10.230 [14]

Eu3+ + ida2− → [Eu(ida)]+ 6.48 [77]

Eu3+ + 2ida2− → [Eu(ida)2]− 11.65 [77]

Figure 1 shows the species distribution diagrams for Sm(III)-tda system built with
these results for the ligand-to-metal molar ratios 1:1 and 3:1, while Figure S1 shows similar
diagrams for Eu(III). The low stability of these complexes is reflected in the high percentage
of free Ln(III), especially below pH 4–5. Even though the complex species [Ln(Htda)]2+

is detected in this interval (contrary to what happens in oda or ida-containing systems),
the partially protonated ligand gives place to a low-stability species that forms only in a
relatively low percentage (the calculated log10 K values for Ln3+ + Htda− → [Ln(Htda)]2+

are 2.0 and 1.5 for Sm and Eu, respectively). It is worth mentioning at this point that the
present results are in perfect agreement with previous findings based on the luminescence
lifetime measurements of Eu(III) or Sm(III) ions in the presence of tda in an aqueous
solution [78,79]. In particular, these findings suggest the non-participation of the S atom
in the coordination sphere, which is in agreement with the formation of much less stable
species in comparison to what happens with the analogous oda or ida ligands [78,79].
Besides, similar experiments carried out in the acid interval show the same average number
of ca. six Sm-coordinated water molecules for conditions in which either [Sm(tda)]+,
[Sm(Htda)]2+ or [Sm(tda)(Htda)] should predominate [78,80]. This accounts for the non-
existence of the last species, which was not detected in this work. On the other hand,
the hydrolysis of the lanthanide(III) ion at pH values above 7–8 represents a relevant
competitive process to be considered in the synthesis of the compounds. In that sense, just
above pH 3 and in the presence of ligand excess, mononuclear species are expected to be
present. In contrast, the competition of hydrolysis processes is expected to be minimized.
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3.2. Synthesis and Characterization

Following our previous strategy to isolate Ln complexes with ida and derivatives [19,81]
and taking into account the results of the preceding section, we prepared the complexes
[Ln2(tda)3(H2O)5]·3H2O (Ln = Sm (1), Eu (2)). An aqueous solution of LnCl3 and H2tda
(molar ratio 1:3, pH 3.3) was allowed to evaporate slowly to obtain the crystalline compounds.
Preliminary characterization of the solids by elemental analysis is in good agreement with
the proposed formula. The IR spectra (Figure S2) were almost identical for both complexes
suggesting very similar structures. It is noticeable the shift and splitting of the sharp signals
νs(COO) (1698 cm−1) and νas(COO) (1430 cm−1) of the free ligand: 1 and 2 exhibit very strong
νs(COO) signals at 1595 and 1564 cm−1 and νas(COO) at 1425 and 1383 cm−1. The stoichio-
metric ratio found in the solids (molar ratio Ln:tda 2:3) is the same as found in the complexes
[Ln2(tda)3(H2O)2] previously reported [57–59]. In those previous reports, the synthesis was
performed by solvothermal procedures and, in general, in water: ethanol mixtures.

TGA of the solids (Figure S3) shows a broad weight loss up to 200 ◦C, corresponding
to all the water molecules (calculated for 1, 16.2%, found 15.2%; calculated for 2, 16.2%,
found 15.3%). Decomposition appears in both complexes at ca. 320 ◦C.

3.3. Crystal Structures

It was possible to obtain single crystals of 1 and 2, which crystallize in the triclinic
space group P1. They are isostructural, so we will only discuss the structure of 1. Selected
bond lengths are presented in Table 3. Two crystallographically non-equivalent Sm atoms
are present, both with coordination number nine (Figure 2). Sm1 atom is surrounded by
seven carboxylic O atoms, one S atom (S1), and one O of a coordinated water molecule.
Sm2 is bound to four O atoms from water molecules and five carboxylic O atoms arising
from two different ligands (those containing the non-coordinated S2 and S3 atoms). Sm1-S1
distance is 3.130(1) Å, which is close to the values found in similar structures containing
Ln(III) ions and thiol-type S atoms (Table S2).
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The ligand with S2 connects four Sm ions in a monodentate fashion. The third ligand (with 
S3) connects three Sm(III) ions, bis-monodentate towards Sm1 and bidentate towards 
Sm2. 

Figure 2. Perspective drawing of 1 showing the atom labels. Thermal ellipsoids are plotted at the 50%
probability level. Hydrogen atoms and crystallization water molecules are omitted for clarity. Color
code: Sm, orange; C, light grey; O, red; S, yellow. The symmetry-related atoms were obtained by
applying the symmetry codes i 1 − x, −y, 1 − z; ii −x, 1 − y, −z; iii 1 − x, 1 − y, −z; iv −1 + x, +y, +z.
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Table 3. Bond lengths (Å) around central atom for 1 and 2.

1 2

Sm1-O9 2.392(2) Sm2-O7 iii 2.596(2) Eu1-O10 i 2.414(3) Eu2-O11 iv 2.580(2)

Sm1-O9 i 2.585(2) Sm2-O7 iv 2.410(2) Eu1-O6 i 2.378(2) Eu2-O8 ii 2.392(3)

Sm1-O6 i 2.428(2) Sm2-O8 iii 2.552(2) Eu1-O9 2.387(3) Eu2-O11 2.394(2)

Sm1-O10 i 2.545(3) Sm2-O11 2.400(2) Eu1-O5 2.539(3) Eu2-O7 iii 2.405(3)

Sm1-O1 2.376(2) Sm2-O12 ii 2.413(2) Eu1-O1 2.362(3) Eu2-O12 ii 2.544(3)

Sm1-O5 2.396(2) Sm2-O2W 2.433(3) Eu1-O3 2.361(3) Eu2-O5W 2.420(3)

Sm1-O3 2.376(2) Sm2-O3W 2.438(2) Eu1-O6 2.570(3) Eu2-O2W 2.444(3)

Sm1-O1W 2.427(3) Sm2-O5W 2.456(2) Eu1-O1W 2.423(3) Eu2-O4W 2.503(3)

Sm1-S1 3.130(1) Sm2-O4W 2.520(3) Eu1-S1 3.126(1) Eu2-O3W 2.427(3)

i 1 − x, −y, 1 − z; ii −x, 1 − y, −z; iii 1 − x, 1 − y, −z; iv −1 + x, +y, +z
i 1 − x, 2 − y, 1 − z; ii −x, 2 − y, 1 − z; iii x, −1 + y, 1 + z; iv −x, 1 − y,
2 − z

In both Sm ions, polyhedra can be described as a tricapped trigonal prism (JTCTPR-
9) [82,83]. For Sm1, the tricapped trigonal prism is quite irregular with O1, O3, O5, O9, O6i,
and O10i as the vertices of the prism (average distance 2.419 Å), and OW1, O9i, and S1 in
the apices (average distance 2.714 Å). In the case of Sm2, O2W, O3W, O4W, O11, O7iii, and
O12ii conform the prism (average distance 2.467 Å), while O5W, O7iv, and O8iii occupy the
apical positions (average distance 2.473 Å). This is shown in Figure S4.

It is interesting to view the connection between Sm(III) ions provided by the ligand
(Scheme 1). Three non-equivalent ligands are present in the structure. Tda residue con-
taining S1 does not link Sm ions. On the contrary, it is only bound to Sm1 as a tridentate
ligand, generating two O atoms (O2 and O6) that do not participate in the coordination.
The ligand with S2 connects four Sm ions in a monodentate fashion. The third ligand (with
S3) connects three Sm(III) ions, bis-monodentate towards Sm1 and bidentate towards Sm2.
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Scheme 1. Coordination modes of tda in compound 1 (left) and in previously reported structures
[Ln2(tda)3(H2O)2] (right) [59–61].

The coordinative versatility of this ligand provokes the formation of thick sheets in
the bc plane (Figure 3). Sm1 polyhedra are disposed of in couples sharing an edge through
carboxylate groups of ligands with S2 and S3. In contrast, the Sm2 polyhedron shares an
edge with an Sm1 polyhedron through O atoms from the third ligand (with S3).
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Figure 3. Packing of 1 in the bc plane. Polyhedra of Sm1 are colored orange, while Sm2 ones are light
blue. Hydrogen atoms and crystallization water molecules are omitted for clarity.

Crystallization water molecules occupy the free space between the sheets and are
involved in H-bonds, in particular with the uncoordinated O atoms. This is shown in
Figure S5.

Previously reported structures with formula [Ln2(tda)3(H2O)2] exhibit the identical
molar ratio Ln:tda found in 1 and 2 [59–61]. They crystallize in the same triclinic space
group P1, contain two crystallographically non-equivalent Ln atoms, and also present a
2D structure. It is interesting to compare the Ln-S distances. They are 3.105 and 3.091 Å
for Dy [59,60], 3.105 Å for Eu [61], 3.098 Å for Gd [60], 3.122 Å for Sm [59], and 3.099 Å
for Tb [60]. These values have not been considered as a bond distance, except in the Eu
structure. Assuming that an Ln-S bond is present, Ln1 is coordinated by eight oxygen
atoms (all of them from carboxylate groups) and one sulfur atom, and Ln2 is coordinated
by nine O atoms, two of them from coordinated water molecules. From the ligand point of
view, two coordination modes are present, as shown in Scheme 1.

3.4. Photophysical Studies

Figure 4 depicts the solid-state luminescence spectra of compound 2 upon direct exci-
tation of Eu(III) ion at 394 nm, selected from the excitation spectrum and giving place to the
characteristic emission profile of the intra-configuration emission of the metal ion. Eu(III)
is, in general, a much more intense luminescence emitter than Sm(III) [84], accounting
for compound 2 is a much more intense emitter than compound 1 (which is shown in
Figure S6, together with the excitation spectra and the assignment for emission bands).
The emission spectra of Eu(III) show the characteristic five main bands corresponding to
the intra-configuration transitions 5D0 → 7FJ, with J = 0–4. Noticeably, the truly forbid-
den transition 5D0 → 7F0 is observed, even though with very low intensity. This band
is probably associated with the less-symmetric Eu1 center (bound S1 atom) described in
the crystal structure. The presence of the S1 atom in one of the apices of the tricapped
trigonal prism excludes the existence of a mirror plane orthogonal to the main symme-
try axis [85,86]. Indeed, in the [Eu(oda)3]3− complex, with all positions of the tricapped
trigonal prism occupied O atoms and similar Eu-O bond distances, this forbidden band is
not observed [18]. The magnetic dipole transition 5D0 → 7F1 band shows in compound 2
an intense degenerated profile, in line with the rotational symmetry in the coordination
geometry. Furthermore, the 5D0 → 7F2 hypersensitive band is 1.3 times more intense than
the magnetic dipole transition 5D0 → 7F1 band. Noticeably, in the previously reported
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complex [Eu2(tda)3(H2O)2], with just two coordinated water molecules coordinated to
one of the emissive centers, the 5D0 → 7F2 hypersensitive band shows an intensity more
than three times higher than that of the 5D0 → 7F1 band [61]. The presence of four coordi-
nated water molecules in 2 accounts for the lower comparative observed intensity of the
5D0 → 7F2 band. Also in line with this, the behavior of compound 1 is also influenced by
the presence of coordinated water molecules, which diminishes the emissive behavior of
Sm ion, relative to that observed for [Sm2(tda)3(H2O)2] [59] (Figure S6).
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Figure 4. (Left): solid-state excitation spectra. (Right): emission spectra of compound 2 excited at
394 nm. Transitions assigned to each band are also shown. An inset is included for more detail on the
5D0 → 7F0 band.

4. Conclusions

The chemistry of thiodiacetato with the lanthanide ions Sm(III) and Eu(III) has been
explored. First, the solution behavior of this system has been studied, and some light
has been shed on the formed species, considering also previously reported inconclusive
findings. Starting from this knowledge, two new compounds have been obtained and
fully characterized, showing the versatility of the thiodiacetato ligand, which can either
chelate or connect the lanthanide(III) centers. The solid-state optical properties of the
two compounds were studied, the Eu(III) compound resulting in a better luminescence
emitter material.
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Figure S4: Polyhedra around the Sm(III) ions in 1; Figure S5: Packing of 1 in the bc plane showing
H-bonds; Figure S6: solid-state excitation and emission spectra of compound 1; Table S1: Previously
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