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Abstract. A sticking probability model based on the average cluster lifetime is employed for deducing a
kernel capable to describe the kinetics of computer simulated irreversible aggregation processes in two
dimensions. The deduced kernel describes not only the time evolution of the cluster size distribution for
diffusion limited aggregation (DLCA) and reaction limited aggregation (RLCA) but also for the entire
transition region between both regimes. The model predicts a crossover to diffusion limited cluster aggre-
gation for all sticking probabilities at long aggregation times. The time needed for reaching the DLCA

limit increases for decreasing sticking probability.

PACS. 82.70.Dd Colloids — 82.40.Np Temporal and spatial patterns in surface reactions — 02.50.-r Prob-
ability theory, stochastic processes, and statistics — 82.20.F Stochastic models - chemical kinetics

1 Introduction

Aggregation of colloidal particles occurs in a wide variety
of physical, chemical and biological processes [1,2]. Hence,
it is of great practical interest to predict the time evolution
of the aggregating species from relatively simple theoreti-
cal expressions. Smoluchowski’s equation has been widely
used for this purpose [3,4]. This equation, however, needs
a physically deduced aggregation kernel before meaning-
ful conclusions may be drawn from its predictions. So far,
diffusion theory combined with concepts of fractal geom-
etry [5], have been the most important tools for describ-
ing kinetic and structural aspects of aggregation processes
[6,7].

Two limiting aggregation regimes characterized by
very different cluster size distributions and cluster fractal
dimensions have been reported in literature. For diffusion
limited cluster aggregation (DLCA), no repulsive interac-
tions between clusters exist and so, the time spent by a
cluster before it reacts with another one is totally con-
trolled by Brownian diffusion. For reaction limited cluster
aggregation (RLCA), however, there are strong repulsive
interactions that reduce the aggregation rate. If these re-
pulsive interactions correspond to a short range repulsive
barrier then the cluster motion is purely Brownian and
the aggregates interact only on contact. In this case, the
repulsive barrier can be replaced by a sticking probability,
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P, defined as the fraction of effective collisions that lead
to the formation of a new bond [8-10].

The kinetic aspects of the RLCA regime and the
DLCA-RLCA transition for repulsive barriers of moder-
ate height have been widely studied in literature [10-15].
Theoretical models capable to describe simulated or ex-
perimental data, however, are scarce [16]. Moreover, the
complexity of the RLCA regime is enhanced due to the the
existence of a crossover to DLCA at very long aggregation
times [17,18]. This crossover has been interpreted in terms
of spatial cluster density fluctuations which, above a cer-
tain aggregation time, t.ross, become important [18-22].
Since the Smoluchowski approach does not include these
effects, its predictions are not expected to be valid for
times longer than tc;oss-

In this paper, a simple probabilistic model is used for
describing the complete DLCA-RLCA transition arising in
two-dimensional aggregation [23]. Using Smoluchowski’s
approach, the proposed model not only reproduces the
cluster size distribution obtained from simulations but
also predicts the crossover from reaction limited to dif-
fusion limited aggregation at long times in a natural way.
This means that the employed aggregation kernel includes
the effect of spatial density fluctuations and for that rea-
son, allows the Smoluchowski approach to be used even at
very long aggregation times.

The paper is organized as follows: In Section 2, the
theoretical background of aggregation kinetics, dynamic
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scaling and fractal structure is presented. In Section 3,
the probabilistic aggregation model based on the average
cluster lifetime is deduced. The computer simulations and
numerical methods for solving the Smoluchowski equation
are explained in Section 4. In Section 5, simulated data are
compared with the theoretical predictions for the DLCA-
RLCA transition. Finally, we summarize the results and
conclusions in Section 6.

2 Theoretical background

Aggregation may be considered as a non-equilibrium pro-
cess that consists in the formation of big structures start-
ing from particles and small aggregates [2]. The corre-
sponding coagulation kinetics is usually studied by means
of the time evolution of the cluster-size distribution, n;(t),
i.e. the number of cluster formed by 7 constituent particles
at time ¢. Computer simulations [24-26] and experimental
results [9,27] have shown that the cluster size distribution
reaches a scaling form for large cluster sizes i and long
times. This means that n;(t) may be expressed as n;(t) ~
S(t)~2p(i/S(t)) where S(t) =Y, 4*n;(t)/ >, ini(t) is the
weight average cluster size at time ¢. This phenomenon,
called dynamic scaling, is observed in both, two and three-
dimensional coagulation.

Nevertheless, the cluster size distribution alone does
not offer a full description of an aggregation process since
it does not directly account for the morphology of the ag-
gregates and their spatial distribution. Aggregation of dif-
fusing particles (with or without interactions) gives rise to
randomly branched clusters which are usually character-
ized by a fractal dimension, d¢. The widely accepted values
for dy in two dimensions are 1.45 and 1.55 for DLCA and
RLCA, respectively [6,7].

Although the situation is not completely clear in two
dimensions, we assume that the average diffusion coeffi-
cient for a cluster with a characteristic radius of gyration
R, is given by D ~ 1/R, [5]. According to fractal theory,
the fractal dimension may be assessed using the expres-
sion, Ry ~ i'/4s  which relates the radius of gyration to
the cluster size i. Consequently,

D; ~ i (1)

where v = —1/d;. Two-dimensional computer simula-
tions using 7 < —0.25 and a size-independent sticking
probability, P = Py, lead to a bell-shaped scaling func-
tion ¢(x) [25]. In this case, the number average cluster
size, (n(t)), and the weight average cluster size, S(t), ex-
hibit the same limiting behavior at long aggregation times
(n(t)) ~ S(t) ~ t*. The scaling exponent, z, depends on
the aggregation regime and is related to the size-depen-
dence of the cluster reactivity.

Kinetic and structural aspects are strongly related. On
one hand, clusters with a high fractal dimension consist of
compact structures with relatively small radii of gyration
and hence, large diffusivities. On the other hand, compact
structures have a lower cross section and so, collisions with
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other clusters are less frequent. Both effects exist in mu-
tual competition, the first tends to increase and the second
to decrease the aggregation rate.

In order to describe the time dependence of the clus-
ter size distribution, Smoluchowski’s equation has been an
important theoretical tool for dilute systems [28]. It reads

Z kije;(t). (2)

In the case of two dimensions, ¢;(t) = (n;(t))/A represents
the average surface concentration of i-size aggregates con-
tained in the system area A. The aggregation kernel, k;;,
quantifies the mean rate at which two ¢ and j-size clusters
stick and form an (i + j)-size cluster. Smoluchowski’s ap-
proach, however, assumes the time evolution of the react-
ing system to be a deterministic process since it considers
only average values for the aggregate concentrations and
neglects fluctuations in the cluster population.

This problem may be avoided using a stochastic mas-
ter equation approach [29,30]. Therefore, the aggregation
state for a reacting system at a fixed time is characterized
by a state vector n = (ni,na,...,n,...). For irreversible
aggregation processes of dilute systems, the time evolu-
tion of the probability, P(n,t), for finding the system in
the state n is given by the master equation

1—1

=
:§Zkﬂ jci(t)ei—s(

j=1

dcz

dP(n,t)
ST = Skl + 1) (s + 14 65) P )
0.j
—ni(n; — 6i;)P(n, )] (3)
where d;; is the well-known Kronecker symbol and n:j is
the following displaced state

Lo { (o)
7 (L

The aggregation kernel, k;;, must be understood as an
orientational and morphological average for all clusters.
This means also that k;; depends on the cluster shape
and particularly, on their fractal dimension. It should be
emphasized that the aggregation kinetics is completely de-
termined by the kernel. Most kernels used in the literature
are homogeneous functions of ¢ and j. According to van
Dongen and Ernst [32], this kind of kernels may be char-
acterized by two exponents, A and u, which are defined as

n; +1,...,
ni+2,...,n9

for i #j
for i =j.

nj+1,..,n; —1, )
i— 1)

1,7 > 1
J>i (4)

Kaiaj = a’kij

keij ~ it AT
where a is a large positive constant. For A < 1, the expo-
nents z and A are related by z = 1/(1 — ).

When clusters stick at the first collision (P = 1),
the aggregation rate is completely determined by the
Brownian diffusion of the aggregates (DLCA). For this
regime, an explicit expression for the kernel may be
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obtained by estimating the rate of collisions for suffi-
ciently long times. In a d-dimensional space, this reasoning
yields [6,26]

k" ~ (Di+ Dj)(Ri + R;)** (5)
where D; and R; are the diffusion coefficient and the ra-
dius of gyration of an i-size aggregate, respectively. Using
equation (1) and taking into account the fractal cluster
structure, one finally obtains for d = 2:

KB _
kEr ==L (z s 4 1/df) . (6)

This kernel is homogeneous, having A = u =
—1/1.45 ~ —0.69.

—1/df =

3 A kernel for the DLCA-RLCA transition

When repulsive inter-particle forces are present, the ag-
gregation rate decreases since only a fraction of cluster-
cluster collisions leads to coagulation. If the repulsive
potential barrier is of short range, the barrier can be
replaced by an effective sticking probability, P. Hence,
the clusters movement will still be Brownian. In the limit
P — 0, the aggregation process is completely controlled
by the cluster reactivity (RLCA). For intermediate values,
a continuous transition from DLCA to RLCA is expected.
Recently, Odriozola et al. presented a probabilistic aggre-
gation kernel for the DLCA-RLCA transition in three di-
mensions [23]. In this section, we adapt their expression
for two dimensional aggregation and explain the necessary
steps for deducing it in detail.

In two dimensions, the Brownian kernel may be writ-

ten as kg’“ = A/td;f , where A is the surface area of the

system and tijf represents the average time spent by two
freely diffusing ¢ and j-size clusters before they collide.

For a sticking probability lower than unity, the clus-
ters have to collide more than once in order to aggregate.
Therefore, the average time, (t);;, spent by a given pair
of clusters before coagulation becomes longer due to the
effect of non-effective collisions. In this case, the aggrega-
tion kernel is given by k;; = A/(t);;. In order to deduce
an analytical expression for (¢);;, it is useful to distin-
guish between cluster-cluster collision and cluster-cluster
encounter. We call collision when two clusters touch each
other and define encounter as a sequence of consecutive
collisions between the same pair of clusters [23]. Thus, an
encounter begins at first collision and ends when the clus-
ters aggregate or one of them diffuses away to collide with
another cluster. It is convenient to define ¢{; as the av-
erage time spent by a pair of colliding clusters between
two consecutive collisions. Please note that, the average
time between two consecutive encounters is already given
by tdlf .

Smce P is the sticking probability, (1 — P) gives the
probability for a non-effective collision to occur. Let’s sup-
pose that two ¢ and j-size clusters coagulate at first con-
tact. This event has a probability P and the time needed

for it is t?jf . If the clusters do not stick, they have two
different possibilities, to collide again or to diffuse away.
Hence, it is convenient to define P as the probability for

the clusters to collide again. Evidently, (1 — P) is the
probability for the clusters to end an encounter and to
diffuse away. Since the cluster cross section grows with
cluster-size, it is obvious that the probability Pj; must
increase Wlth 7 and j.

As an example for a more complex situation, the fol-
lowing event is considered: “Two clusters with particular
sizes i and j diffuse and collide four times. Then one of
them diffuses away and collides two times with a third
cluster before it forms a stable bond”. The average time for
this event consisting of two encounters with four and two
collisions, respectively, is given by ¢V = 2t%f 4 4t¢. The
probability for this event is PV = (P¢)*(1—P¢)(1—P)5P.
Here, the ¢ and j dependence is omitted for the sake of sim-
plicity. In order to determine the average aggregation time
(t), all possible events weighted by their corresponding
probabilities have to be considered. Hence, (t) is given by

— Z qevte'uPe'u (7)
ev

where ¢°? is the number of equivalent events, i.e. the num-
ber of different events which contribute to the sum with
the same average time and probability. This relationship
is consistent only if > ¢*" P =1 is verified.

In order to evaluate equation (7), it is necessary to
find a general expression for PV ¢tV and ¢°’. For this
purpose, we evaluated these parameters for all possible
events. Table 1 resumes the results for events consisting
of less than five collisions. Here, the events are charac-
terized as a sequence of encounters consisting of different
number of collisions. For example, e(m)e(n) refers to an
event composed by two encounters of m and n collisions,
respectively. From Table 1 the following generalized ex-
pressions may be deduced

) = (471)
10 (k, 1) = (k — D47 4 1
Pev(k, l) = P(]. _ P)kfl(PC)l(l o PC)k:—lfl (8)

where k stands for the total number of collisions and
for the total number of pairs of consecutive collisions con-
tained in all encounters of a given event. Using these re-
sults in equation (7), leads finally to

magt
x P(1= P (PO (1= PR (9)

Here, the limits of the sums are established in order
to account for all possible events. Before evaluating
equation (9), the normalization condition,

oo k-1
1= quvpev :ZZ(kII)P 1_
ev k=1 1=0

% (Pc)l(l _ Pc)k—l—l

E
[y

— Dt 4 1]

Il
=]

P)k—l

(10)
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Table 1. Time and probability scheme for events composed by less than five collisions. Here,

e(m)e(n) refers to an event

composed by two encounters of m and n collisions, respectively. ¢ is the number of equivalent events, k is the number of

collisions and [ is the number of collision times, t..

event time probability | ¢« | k| 1
e(1) taif P 1 1 0
e(1)e(1) 2t aif P(1—P)(1-P,) 1 2 0
e(2) taif + te P(1— P)P. 1 2 1
e(1)e(1)e(1) Staif P(1-P)*(1-PR.,) 1 3 0
e(1)e(2) uis + Lo P(1— P)*P.(1— P,) 2 3 1
e(2)e(1)

e(3) taif + 2tc P(1— P)?p? 1 3 2

e(1)e(1)e(1)e(1) Ataif P(1-P)*(1 - PR.)? 1 4 0
e(L)e(1)e(2)
e(1)e(2)e(1) Btais + te P(1—P)*P.(1 - P.)? 3 4 1
e(2)e(1)e(1)
e(2)e(2)
e(1)e(3) 2t gif + 2te P(1-P)*P2(1 - P.) 3 4 2
e(3)e(1)

e(4) tais + 3te P(1-P)*P? 1 4 3

must be verified. Considering that ZI o (3)a®bX " =

where the sum limits were conveniently changed. Tak-

(a + b)X, equation (10) reduces to ing into account that ZJ: 0 (%) a®b*~* = (a+ b)* and
Zf 0@ (%) a®b* =" = Xa(a+ b)*~!, one obtains
1= P(1—PF1{P+ (1Pt -
k=1 {ty="P {t‘“’f > (k+1)1-P)F
G > 1 k=0
= P(l1 - P k-1 =P 11
S PU-P} =P (O

=~
Il

1

and so, it is correct.
Now, equation (9) can be rewritten as

(k+1)t¥ p(1 — P)*

Mg

{t) =

b
Il

0

(;s) (Pc)l(l _ Pc)k—l

-

Il
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(t¢ —t¥YP(1 — P)*

+
NE

o0
tde Z k?
k=0

rrrl

L fai c i c
(M), = 5 {th + e —hHa-PPs} (1)

which yields finally

where we have explicitly indicated the ¢ and j dependence
for the different parameters.

Equation (14) express the average time, spent by a pair
of cluster before aggregation, as a function of the quanti-
ties P, P, tf; I and t7;. Its reciprocal value is proportional

k=0 to the irreversible aggregation kernel. This equation pre-

k dicts average times larger than ¢*/ for all sticking proba-

X l (f ) (P c)l 1-pP c)k_l (12)  bilities smaller than unity, which means that no-DLCA ag-
1=0 gregation rates are always smaller than the corresponding
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dzf

DLCA rate constants. Defining «;; = t§;/t;;’ one finally
obtains the following expression for the kernel
A
ki; =
Yty
A
- t;'?f 1+ (aij —1)(1 = PPy
kBrp
= “ : (15)
I+ (o~ D0 P)F

This kernel contains the Brownian kernel as limiting case
for P = 1. For P — 0, the RLCA regime is found. Inter-
mediate values of P reproduce the whole transition region
from DLCA to RLCA. According to their definition, dif

L_] )
P¢ and oy; are symmetrical functions of the cluster sizes

1,
i énd j. Hence, the deduced transition kernel is, as ex-
pected, also symmetric in ¢ and j.

For further calculations, it is convenient to express the
probability P in terms of the average number of colli-
sions per encounter for a non- aggregating system, AN/;.
This magnitude may be calculated considering that the
probability for a pair of non aggregating clusters (P = 0)
to perform an encounter consisting of exactly n consecu-
tive collisions is given by (Pf; Y= (1- P %). Consequently,
Ni; may be calculated as

Ny=(

Unfortunately, an analytical expression for AV;; could not
be deduced from theoretical considerations. For further
calculations, however, a hypothesis about its size depen-
dency becomes necessary. As mentioned above, NV;; is a
symmetrical function of ¢ and j. Moreover, it must be
an increasing function of ¢ and j. According to these two
restrictions, we propose the simple form N;; = N1 (if)?,
where N7 is the mean number of collisions between mono-
mers in a non-aggregating system and b > 0 is a constant.
It should be pointed out that b neither depends on the
cluster size nor on the sticking probability, P. Further-
more, it is reasonable to assume that, for diluted systems,
the average time between consecutive collisions is very
small in comparison with the diffusion time and so, a;;
may be neglected in equation (15). With these assump-
tions, the transition kernel reads finally

) kBT PN (ig)® 17

9 BN )+ (- P) o
This kernel depends on the DLCA dimer formation rate
constant, k7, the cluster fractal dimension, dy, the aver-
age number of monomer-monomer collision per encounter
for a non-aggregating system, N7, the sticking probabil-
ity, P, and the exponent b. These parameters may be ob-
tained in the following way: k£ can be determined by
fitting the kinetics of DLCA simulations, i.e. for P = 1.
Its value is the same for all other sticking probabilities
P < 1. The cluster fractal dimension is calculated directly

from the structure of the simulated clusters by means of
the well-known radius of gyration method. Ni; is assessed
by averaging the number of collisions per encounter in sim-
ulations of non-aggregating monomeric particles. Since P
is an input value for the simulations, only the exponent b
remains as an unknown global parameter for all sticking
probabilities.

It should be pointed out that the deduced transition
kernel predicts a crossover to diffusion-limited aggregation
for all aggregation processes with a sticking probability
smaller than unity. This may be seen by considering that
PN11(i5)® > (1 — P) for large clusters. Hence, the second
term is negligible in the denominator of equation (17) and
so, k;j ~ kBT, This means that, even for very small stick-
ing probabilities, the final stage of aggregation is always
diffusion controlled. However, the time when the crossover
occurs increases with decreasing sticking probability.

4 Simulations and numerical computations

Off-lattice simulations of two-dimensional irreversible ag-
gregation processes were performed using periodic bound-
ary conditions. The considered sticking probabilities were
P =1,0.5,0.1, 0.05, 0.01, 0.005 and 0.001. The simula-
tions were carried out by placing Ng = 30000 particles of
radius, a, randomly inside a two-dimensional square box
avoiding particle overlap. The side length of the square
box was set to L = 9708a in order to achieve a surface frac-
tion of 0.001. The monomeric particles were always moved
a fixed step-length [y = 0.5a in a random direction. Clus-
ters formed by ¢ > 1 particles are moved the same distance
in a random direction with a probability given by their dif-
fusion coefficient (Eq. (1)) [25]. Since the cluster diffusivity
depends on the cluster fractal dimension, a self-consistent
method had to be used. For this purpose, several simula-
tion runs were performed until the cluster fractal dimen-
sion used in equation (1) matched the one obtained from
the structure of the simulated clusters. The fractal dimen-
sions for the considered sticking probabilities from P =1
to 0.001 were determined to be dy = 1.45, 1.46, 1.49, 1.50,
1.53, 1.54 and 1.55, respectively. Rotational cluster motion
was not considered. After each translation step, the time
is incremented by At = 1/(N¢Dpax) whether the cluster
is actually moved or not. Here, N (t) and Dyax(t) are the
number of clusters and the largest diffusion coefficient in
the whole system at time t, respectively.

A collision is considered to occur when a moved ag-
gregate overlaps with another one. For DLCA, every colli-
sion produces aggregation. For non-DLCA, only a fraction
given by the sticking probability, P, leads to the formation
of a new bond. In order to avoid particle overlap, the po-
sition of the moved cluster is always corrected backwards
so that only the cluster surfaces are in contact. When ag-
gregation occurs, both aggregates are considered as a new
larger cluster that will continue its movement in the fol-
lowing time step. Otherwise, the moved cluster is reflected
until it covers the complete step-length, [o.

The simulations were stopped when less than 100 clus-
ters were left in the system. The simulation time-step was
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converted into real time considering a monomer radius of
a = 2.75 x 1077 m and assuming Stokes’s law for the
monomer diffusivity in water at 298 K.

lp?
Atreal = _Atsim'

1D (18)

Ni1 was obtained from simulations with P = 0 since it is
defined as the mean number of monomer-monomer colli-
sions per encounter in a non-aggregating system.

The time evolution of the cluster-size distribution of
the simulated data was compared with the corresponding
stochastic solution of the master equation (Eq. (3)) using
the deduced transition kernel (Eq. (17)) [29,30] together
with the fractal dimensions obtained from the simulations.
Furthermore, the same surface fraction and monomeric
initial conditions as for the computer simulations were
established. The number of initial particles was set to
Ny = 10° in order to achieve reliable statistics at large
aggregation times.

5 Results and discussion

Before studying non purely diffusion controlled aggrega-
tion processes, we first checked whether the two-dimensio-
nal Brownian kernel (Eq. (5)) is capable to correctly de-
scribe the time evolution of the cluster-size distribution
arising in pure DLCA. For this purpose, dilute systems of
sticky particles were simulated (P = 1). In this case, the
obtained cluster fractal dimension was d; = 1.45. Figure 1
shows that the time evolution of the simulated cluster size
distribution is in good agreement with the theoretical pre-
diction calculated from equation (3). From the best fit, the
Brownian dimer formation rate constant was obtained to
be kB = 4.5 x 10712 m? /s. This value was also used for
fitting the kinetics of processes with sticking probabilities
smaller than unity.

In order to check the validity of the deduced transi-
tion kernel (Eq. (17)), irreversible aggregation processes
in two dimensions were simulated for the sticking prob-
abilities P = 0.5, 0.1, 0.05, 0.01, 0.005 and 0.001. The
obtained cluster-size distributions for P = 0.1, 0.01 and
0.001 are shown as data points in Figure 2. As can be
seen, the monomer concentrations decrease monotonously
for all sticking probabilities since they only can disap-
pear as they form larger aggregates. Clusters other than
monomers must first be generated before they may react
and so, the corresponding curves exhibit a clear maximum.
As expected, the aggregation processes become slower for
decreasing sticking probability.

The simulated data may now be fitted by the corre-
sponding stochastic solutions of Smoluchowski’s equation
using the proposed 2D transition kernel. Before doing so,
it was necessary to determine a reliable value for the still
unknown parameter A7;. For this purpose, additional sim-
ulation runs for P = 0 were carried out under the same
simulation conditions as used before, and A7; was calcu-
lated as the average number of monomer-monomer colli-
sions per encounter. The obtained result was N7; = 16.1.
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Fig. 1. Time evolution of the normalized cluster-size distri-
bution for P = 1. The points correspond to the computer

simulated data for monomers up to 25-mers grouped in log-
arithmically spaced intervals: (0) monomers, (o) dimers, ()
3-mers, (v) 4 to 6-mers, (¢) 7 to 10-mers, (+) 11 to 15-mers and
(x) 16 to 25-mers. The solid lines represent the corresponding
stochastic solution for the Brownian kernel.

Hence, only b remains as a global fitting parameter for
all sticking probabilities. The best fit for the complete set
of simulated data was obtained for b = 0.37. The corre-
sponding stochastic solutions for the time evolution of the
cluster-size distribution are included as continuous curves
in Figure 2. In all cases, an excellent agreement between
the fitted curves and the simulated data is observed. This
means that the deduced kernel is capable to reproduce the
aggregation kinetics not only for the limiting DLCA and
RLCA regimes but also for the complete transition region
between them. It should be pointed out that the fitted
value of b = 0.37 is very close to the value of b = 0.35 that
we found for three-dimensional aggregation [23] and the
value of b = 0.4 reported by Thorn and Seesselberg [31].
This indicates that the exponent b seems to be indepen-
dent on the dimension of space where the aggregation pro-
cesses occur.

The quality of the fits may also be corroborated by
plotting the weight average cluster size as a function of
time. As can be seen in Figure 3, the theoretical and sim-
ulated curves agree almost perfectly for the different stick-
ing probabilities. Moreover, three different regions may be
distinguished. At early stages, the cluster size distribution
is still affected by the monomeric initial conditions and the
overall cluster growth rate is slow. The time spent in this
region is longer the smaller the sticking probability, P,
becomes.

After some time, ¢ > tsca1, the weight average cluster
size shows a power law dependence, S(t) ~ t*. Here, the
value of the scaling exponent z increases for decreasing
P and reaches a maximum in the RLCA limit. It can be
shown that, in this region, the cluster-size distributions
become independent of the initial conditions and exhibit
dynamic scaling, i.e. they may be expressed in terms of a
single master curve.
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Fig. 2. Time evolution of the normalized cluster-size distribu-
tion for the sticking probabilities a) 0.1 b) 0.01 and c¢) 0.001.
The points correspond to the computer simulated data for
monomers up to 25-mers grouped in logarithmically spaced in-
tervals: (O0) monomers, (o) dimers, (a) 3-mers, (v) 4 to 6-mers,
(¢) 7 to 10-mers, (+) 11 to 15-mers and (x) 16 to 25-mers. The
solid lines represent the corresponding stochastic solution for
the transition kernel.

10 100

At longer aggregation times, the growth rates tend to
decrease for all sticking probabilities smaller than unity
and the slope of the curves become similar to the one given
by the curve for P = 1. This phenomenon occurs at a time
t > teross and is known as crossover to Brownian coagula-
tion. As was explained in the theory section, the aggrega-
tion rate constants become similar to the Brownian rate

100 5

)
10

1000 10000 100000 1000000
t(s)

Fig. 3. Time evolution of the weight average cluster-size, S(t),
for the sticking probabilities P = 1, 0.1, 0.01 and 0.001. The
points correspond to the computer simulated data. The solid
lines represent the corresponding stochastic solution for the
transition kernel.
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Fig. 4. Critical number average cluster size as a function of
the sticking probability.

constants for PN11(ij)? > (1—P). Using this relationship,
a critical cluster size, ncross, at which the crossover occurs
may be determined considering ¢ &~ j & N¢ross- Hence,

<1 _py\ /2
Necross = | 57 .
PN

Figure 4 shows the critical number average cluster size
as a function of the sticking probability. As can be seen,
Neross increases for decreasing P. This implies that also
the time, t¢oss, at which the crossover occurs should be
larger for smaller sticking probabilities. In order to check
this point, the number average cluster size has been cal-
culated from simulations for different sticking probabili-
ties and plotted versus time in Figure 5. For all curves
with P smaller than unity, the critical cluster sizes, ncross,
were obtained using equation (19) and indicated in the
plot as horizontal lines. As expected, the correspond-
ing aggregation times increase for decreasing sticking

(19)
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Fig. 5. Time evolution of the number average cluster-size,
(n(t)), obtained from computer simulations for the sticking
probabilities P = 1, 0.05, 0.01, 0.005 and 0.001. The critical
cluster size obtained from equation (19) and the corresponding
crossover times are indicated as horizontal and vertical lines,
respectively.

T
1000

probabilities. Moreover, the crossover from the scaling re-
gion to Brownian coagulation can be observed at the indi-
cated crossover times for P < 0.01, i.e. the curves start to
bend and their slopes tend towards the DLCA limit. For
larger sticking probabilities, however, the critical cluster
size becomes so small that the crossover occurs already at
very early stages of aggregation. In this case, the system
is still affected by the monomeric initial conditions and so,
the crossover is not clearly observable.

The above mentioned observations may be studied in
more detail considering the size-dependence of the tran-
sition kernel. For this purpose, the normalized diagonal
elements of the transition kernel, k;; /kZ", were plotted in
Figure 6a as a function of i for different sticking probabil-
ities. For large cluster sizes, all curves approach unity, i.e.
the Brownian limit which is characterized by the power
law dependence, ki ~ i~/ . According to equation (4),
this behavior corresponds to A = —1/dy. Furthermore, for
very low sticking probabilities, an additional clearly de-
fined power law dependence is found for clusters smaller
than m¢ress- This can be seen more clearly in Figure 6b
which represents directly the diagonal elements of the
transition kernel for the P = 0.0001. For small cluster
sizes, the size dependence is given by kj; ~ i~ 1/drt2b
which corresponds to A = —1/d¢ + 2b. This results may
be summarized as

Vg2
| -1/dy

It should be pointed out that the size range where the
small cluster scaling appears increases for decreasing P.
This explains why the scaling region for the weight aver-
age cluster size (see Fig. 3) is clearly defined only for very
small sticking probabilities. Only in this case, the aggrega-
tion kernel preserves its initial power law dependence up to

i << nCI‘OSS

20
1 >> Neross- ( )
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Fig. 6. a) Size dependence of the normalized diagonal ele-
ments of the transition kernel, ki /k5", for P = 0.1, 0.01,
0.001, and 0.0001. As indicated in the plot, a power law depen-
dence ki /kE™ ~ i? is observed for low sticking probabilities
and small cluster-sizes. b) Size dependence of the diagonal ele-
ments of the transition kernel, k;;, for P = 0.0001. Two asymp-
totic regions are observed. For small cluster-sizes, ki; grows as
i~ /4542 while for large cluster sizes, a decreasing power law
dependence k;; ~ i~Y4s is found. The corresponding crossover
Size Neross, calculated from equation (19), is indicated as verti-
cal line.

relatively large clusters sizes so that the initially monodis-
perse cluster size distribution has sufficient time to de-
velop the corresponding scaling behavior. For intermedi-
ate sticking probabilities, however, t...ss becomes similar
to tsca1 and so, the scaling region is already affected by the
crossover to Brownian coagulation. This implies that the
observed scaling exponents z fall between the limiting val-
ues z = 1/(1+1/dy—2b) and z = 1/(1+1/dy), correspond-
ing to pure RLCA and DLCA, respectively. This effect
is corroborated by the simulated data shown in Figure 3
where one can observe that z decreases continuously as P
increases. The A values reported in literature for experi-
mental and computer simulated data correspond usually
to this short time scaling region, i.e. they are obtained for
tscal <t < teross-
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In our particular case, only for the lowest simulated
sticking probability, P = 0.001, the time interval ts.. <
t < teross for small cluster scaling is long enough so that
a reliable value for z could be determined. The obtained
value was z = 1.05 £ 0.02. For the DLCA limit, an expo-
nent z = 0.60+0.01 was found. Both values are very close
to the theoretical prediction of z = 1/(1+1/d;—2b) ~ 1.1
and z = 1/(1 — 1/dy) =~ 0.59 for RLCA and DLCA,
respectively.

The long-time crossover to Brownian coagulation was
also reported for three dimensional aggregation and has
been explained previously as a direct consequence of local
cluster density fluctuations [22]. Smoluchowski’s equation
is a mean-field approach to coagulation and describes the
aggregation kinetics only in terms of the cluster size dis-
tribution, n;(t). As mean-field we refer to the fact that
it does not consider two important effects, the different
structures of clusters of a given size and spatial density
fluctuations at long times. For a system consisting of a
sufficiently large number of clusters, the effects produced
by the different cluster structures may be implemented
by defining the rate constants, k;;, as morphological and
orientational averages for all pairs of reacting clusters of
size ¢ and j. But how to account for long time spatial
fluctuations? It was shown that this type of fluctuations
give rise to a crossover to Brownian coagulation for all
diffusion-reaction processes occurring in space with a di-
mension below a critical value [22]. This means that, under
these conditions, all aggregation kernels should converge
towards the Brownian kernel for large clusters. The pro-
posed transition kernel does so and hence, accounts for
large time cluster density fluctuations in a natural way.
Consequently, Smoluchowski’s equation remains valid at
all times and is capable to describe even the evolution of
the cluster size distribution at long times. In other words,
the proposed transition kernel may be understood as an
effective kernel, which considers both effects, cluster struc-
ture variations and spatial fluctuations at long times.

6 Conclusions

The kinetics of irreversible aggregation processes arising in
two dimensions have been studied using a stochastic mas-
ter equation approach for solving Smoluchowski’s equa-
tion. For this purpose, a probabilistic aggregation kernel
has been deduced and applied for describing computer
simulated data for the DLCA, RLCA and intermediate
regimes. The theoretical predictions corresponding to this
kernel fit the time evolution of the cluster size distribu-
tion for all sticking probabilities, P, with only one global
fitting parameter.

For very small sticking probabilities, three different ag-
gregation stages can be distinguished. The cluster-size dis-
tribution evolves slowly from its initial monomeric condi-
tions to an intermediate scaling regime characterized by
a homogeneity exponent A = —1/dy + 2b. Afterwards, a
crossover to Brownian coagulation is observed for all stick-
ing probabilities. In this case, the homogeneity exponent is
given by A = —1/dy. The time when the crossover occurs

decreases for increasing sticking probability so that the
scaling region becomes affected by this effect and finally
disappears for sticking probabilities close to unity.

The deduced transition kernel gives a simple expla-
nation for the crossover from RLCA to DLCA observed
previously by several authors and explained in terms of
spatial cluster density fluctuations. The proposed model
predicts that the number of collisions per encounter in-
creases for larger cluster sizes. This implies that two huge
clusters are involved in so many collisions per encounter
that, even for very low sticking probabilities, they are not
able to diffuse away and finally end up forming a stable
bond. Hence, a large cluster aggregates almost certainly
during its first encounter with another cluster and so, be-
haves practically as a sticky particle. This means that the
deduced transition kernel considers the effect of spatial
cluster density fluctuations in a natural way and hence,
allows the mean field Smoluchowski approach to be used
even at very long aggregation times.
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