

FACULTAD DE QUIMICA DEPARTAMENTO DE DOCUMENTACION Y BIBLIOTECA

CENTRO NACIONAL DE INFORMACION QUIMICA

Tel: (5982) 924.18.93 Tel: (5982) 929.08.59 Fax: (5982) 924.19.06

Correo electrónico: biblioteca@bilbo.edu.uy

centro@bilbo.edu.uy

BIBLIOGRAFIA

Tema: Impurezas en productos

Fecha: 15 de junio de 1999

WinSPIRS 2.1

El uso está sujeto a los términos y condiciones de la suscripción, al Acuerdo de licencia, al Copyright aplicable y a la protección de propiedad intelectual como se define en las leyes de su país y convenciones internacionales.

```
No.
          Registros
                            Solicitud
    1
                  3319
                            impurities
    2
                  7980
                            drugs
    3
                   128
                            impurities and drugs
Registro 1 de 9 - Analytical Abstracts
      Active drug substance impurity profiling part I. LC-UV diode-array spectral matching. Nicolas,-EC; Scholz,-TH
TI:
AU:
AD:
      DuPont Merck Pharm. Co., Deepwater, NJ 08023, USA
CP:
      J-Pharm-Biomed-Anal. Jan 1998; 16(5): 813-824
SO:
JN:
      Journal-of-Pharmaceutical-and-Biomedical-Analysis
      0731-7085
IS:
CO:
      JPBADA
PY:
      1998
LA:
      English
PT:
      Journal
      UV diode-array spectral matching was used online after HPLC to characterize impurity
AB:
      profiles of drugs. DuP 941 a potential anti-cancer drug was used as a model analyte.
      UV spectral library was generated for several <u>impurities</u> of DuP 941 from the earliest safety lot. <u>Impurities</u> in subsequent lots were then investigated and their spectral
      characteristics were compared with those contained in the spectral library. The technique was found to be very sensitive being capable of detecting impurity levels of ~0.

1%. The method was found to be strongly influenced by the detector sensitivity lamp
       intensity and the presence of other impurities with similar UV spectra.
IA:
      drugs-A: detection of impurities in, by LC-UV diode-array spectral matching
SC:
      G-Pharmaceutical-Analysis
      00100
SS:
COP: Copyright: The Royal Society of Chemistry
AN:
      6008G00016
       6008
Registro 2 de 9 - Analytical Abstracts
TI:
      Drug impurity profiling strategies
      Gorog, -S; Babjak, -M; Balogh, -G; Brlik, -J; Csehi, -A; Dravecz, -F; Gazdag, -M; Horvath, -P;
AU:
      Lauko, -A; Varga, -K
AD:
      Chem. Works Gedeon Richter Ltd., 1475 Budapest, Hungary
CP:
      Hungary
SO:
      Talanta. Sep 1997; 44(9): 1517-1526
JN:
      Talanta
IS:
      0039-9140
CO:
      TLNTA2
PY:
      1997
LA:
      English
PT:
      Journal
      Presented at Euroanalysis IX, held in Bologna, Italy, Sep 1996
A scheme for the determination of <u>impurities</u> in bulk <u>drugs</u> is described, which involves
CF:
AB:
      chromatographic, spectrometric and hyphenated techniques. The scheme is illustrated
      using the analysis of a variety of \underline{\text{drugs}} as examples. It involves initial analysis by TLC, HPLC or GC using standards for identification of \underline{\text{impurities}}. If identification is
      not possible further analysis by UV spectrophotometry (e.g. using a diode-array detector in HPLC) or densitometry (e.g. in TLC) followed by preparative TLC or HPLC and MS, GC-MS or HPLC-MS analysis. If identification is still not achieved NMR or HPLC-NMR analysis is
      necessary. The suggested <u>impurities</u> are then synthesized enabling their identity to be confirmed by retention matching. Identification of <u>impurities</u> in propanidid and allylesterol by GC-MS and HPLC and identification of <u>impurities</u> in mazipredone by HPLC-MS
      and HPLC are described in some detail.
      drugs-M: identn. of impurities in, by chromatography and spectrometry, schemes for
G-Pharmaceutical-Analysis
IM:
SC:
      00100
SS:
COP: Copyright: The Royal Society of Chemistry
AN:
      6001G00009
UD:
       6001
Registro 3 de 9 - Analytical Abstracts
      Simultaneous resolution and detection of a drug substance, impurities, and counter ion
TI:
      using a mixed-mode HPLC column with evaporative light scattering detection.
      Lantz, -MD; Risley, -DS; Peterson, -JA
AD:
      Lilly Corp. Center, Pharm. Sci. Div., Indianapolis, IN 46285, USA
CP:
      USA
SO:
      J-Liq-Chromatogr-Relat-Technol. May 1997; 20(9): 1409-1422
JN:
      Journal-of-Liquid-Chromatography-and-Related-Technologies
IS:
      1082-6076
co:
      JLCTFC
PY:
      1997
LA:
      English
PT:
      Journal
AB:
      LY 326315 was used as a model drug. Samples were prepared in aqueous 50% methanol.
```

Analysis was performed by HPLC on a 7 micro m mixed-mode phenyl/cation column (25 cm x 4.6 mm i.d.) with methanol/0.1M-ammonium acetate buffer of pH 4.5 (1:1) as mobile phase (

```
1 ml/min) and evaporative light scattering detection (28degreeC, 1 bar and a gain of 7).
      The method allowed the simultaneous detection of a drug substance, impurities and counter
      ions in a single chromatogram (some example chromatograms are illustrated). Results are
      discussed.
     drugs-A: detection of, and their counter-ions and impurities, by HPLC
chromatography,-liquid,-high-performance-C: in pharmaceutical analysis
     G-Pharmaceutical-Analysis
     00100
COP: Copyright: The Royal Society of Chemistry AN: 5908G00017
      5908
Registro 4 de 9 - Analytical Abstracts
     Determination of drug-related impurities by capillary electrophoresis.
     Altria,-KD
     Glaxo Wellcome Res. and Dev., Anal. Sci., Ware, Herts. SG12 ODP, UK
     J-Chromatogr,-A. 31 May 1996; 735(1-2): 43-56
      Journal-of-Chromatography, -A
     0021-9673
      JCRAEY
     1996
     English
     Journal
     A review with 58 references is presented dealing with the progress of capillary
      electrophoresis in determining impurities in drugs. Reports are sub-divided into
      low-pH, high-pH and MEKC applications.
                                                   Potential developments are also covered, these
      including the use of electrolyte additives, developments in instrumentation and the
      increased use of electrochromatography.
IM: pharmaceutical-preparations-M: detmn. of drug-related impurities in, by capillary
     electrophoresis, review
     electrophoresis, -capillary-C: in detmn. of drug-related impurities, review
     G-Pharmaceutical-Analysis
     00100
     B4
COP: Copyright: The Royal Society of Chemistry
     5811G00011
     5811
Registro 5 de 9 - Analytical Abstracts
     Impurities in drug substances and drug products: new approaches to quantification and
     qualification.
     Berridge, -JC
     Pfizer Central Res., Anal. Res. Dev., Kent CT13 9NJ, UK
     J-Pharm-Biomed-Anal. Dec 1995; 14(1-2): 7-12
     Journal-of-Pharmaceutical-and-Biomedical-Analysis
     0731-7085
     JPBADA
     1995
     English
     Journal
     Presented at the Sixth International Symposium on Pharmaceutical and Biomedical Analysis,
     held in St. Louis, MO, USA, 23-26 Apr, 1995
The implications of recent guidelines set by the International Conference on
     Harmonization for the identification, qualification and control of impurities in drugs
     and their formulated products are discussed. Consideration is given to both their
     regulatory impact and the impact on analytical technology.
                                                                          Methods for the qualification
     of impurities which do not involve additional studies are suggested.
     drugs-M: analysis of, for impurities, guidelines for;
     pharmaceutical-preparations-M: analysis of, for impurities, guidelines for
     G-Pharmaceutical-Analysis
     00100
COP: Copyright: The Royal Society of Chemistry
     5808G00018
     5808
Registro 6 de 9 - Analytical Abstracts
     Estimation of impurity profiles in <u>drugs</u> and related materials. XI. Role of chromatographic and spectroscopic methods in the estimation of side-reactions in drug
     syntheses.
     Gorog, -S; Balogh, -G; Csehi, -A; Csizer, -E; Gazdag, -M; Halmos, -Z; Hegedus, -B; Herenyi, -B;
     Horvath, -P; Lauko, -A
     Chem. Works G. Richter Ltd., 1475 Budapest, Hungary
     Hungary
     J-Pharm-Biomed-Anal. 1993; 11(11-12): 1219-1226
     0731-7085
     JPBADA
     1993
     English
     Presented at the Fourth International Symposium on Pharmaceutical and Biomedical Analysis
     held in Baltimore, MD, USA, April 18-21, 1993
A review, with 23 references, is presented indicating the source of <u>impurities</u> in <u>drugs</u>,
     viz, those that originate from unreacted intermediates during synthesis, <u>impurities</u> from reactions with solvents, impurites from catalysts, and those from side-reations, over-reaction, and further reactions of the formed <u>drugs</u> with the reagents or solvents.
```

IA: IC: SC:

SS:

UD:

TI:

AU:

AD: CP: so:

JN:

IS:

CO: PY:

LA:

PT:

AB:

IC: SC:

SS:

CR:

AN:

TI:

AU:

AD:

CP: SO:

JN:

IS:

CO:

PY:

LA:

PT:

CF:

AB:

IM:

SC:

SS:

AN:

TI:

AU:

CP:

SO:

IS: CO:

PY:

LA:

PT: CF:

AB:

```
All of these are explored with knowledge of the synthesis process and the standard
     analytical procedures of all forms of chromatography and spectrometry. (cf. Anal. Abstr.,
     1993, 55, 11E111).
IM:
     drugs-M: analysis of, review;
     pharmaceutical-preparations-M: analysis of, review
     G-Pharmaceutical-Analysis
SS:
     00100
COP: Copyright: The Royal Society of Chemistry
AN:
      5606G00019
UD:
     5606
Registro 7 de 9 - Analytical Abstracts
     Novel approach in the structure determination of an impurity in the presence of a
      pharmaceutical compound.
AU:
      Cholli, -AL; White-Rafalko, -P; Ezell, -EF; Kosarych, -Z; Ellgren, -AJ
AD:
     BOC Group, Tech. Center, Murray Hill, NJ 07974, USA
CP:
so:
     Appl-Spectrosc. Feb 1990; 44(2): 175-183
     0003-7028
IS:
CO:
     APSPA4
PY:
     1990
LA:
     English
PT:
     Journal
AB:
     The proposed method involves slow crystallization to enrich the impurity concn. in
     relation to the pharmaceutical compound. The NMR spectrum of the impurity-enriched phase
     (in soln. or crystallite form) is compared with that of the original sample; this allows determination of impurity structure and concn. The technique is illustrated by the
     identification of an impurity in an enamide derivative; the impurity enrichment was
     achieved in a co-crystalline form. One- and two-dimensional NMR were used, and the
     structure of the impurity was confirmed by X-ray diffraction and high-resolution MS. The technique demonstrates the feasibility of identifying impurities without prior isolation.
IM:
     pharmaceutical-preparations-M: detmn. of impurities in, by crystallization - NMR;
     drugs-M: detmn. of impurities in, by crystallization - NMR
SC:
     G-Pharmaceutical-Analysis
     00100
SS:
COP: Copyright: The Royal Society of Chemistry
AN:
     5302G00001
UD:
     5302
Registro 8 de 9 - Analytical Abstracts
TI:
     Purity determination and evaluation of new drug substances.
AU:
     Van-Rompay, -J
AD:
     Janssen Pharmaceutica, 2340 Beerse, Belgium
CP:
     Belgium
so:
     J-Pharm-Biomed-Anal. 1986; 4(6): 725-732
     0731-7085
IS:
co:
     JPBADA
PY:
     1986
LA:
     English
PT:
     Journal
CI:
     A.E.J.
     A review is presented, including determination of <u>impurities</u>, and their origins and allowable limits. (12 references).

<u>drugs-M:</u> detmn. of <u>impurities</u> in, review
AB:
IM:
     pharmaceutical-analysis-C: detmn. of purity in, review
IÇ:
     E-Pharmaceutical-chemistry
SC:
SS:
     00000
COP: Copyright: The Royal Society of Chemistry
     4907E00001
AN:
UD:
     4907
Registro 9 de 9 - Analytical Abstracts
TI:
     Characterization of drug purity by liquid chromatography.
AU:
     Jansson, -S-0
     AB Hassle, Anal. Chem., 431 83 Molndal, Sweden
AD:
CP:
     Sweden
SO:
     J-Pharm-Biomed-Anal. 1986; 4(5): 615-624
IS:
     0731-7085
co:
     JPBADA
PY:
     1986
LA:
     English
PT:
     Journal
CI:
     G.C.
     A review is presented, with 30 references, of separation of impurities in drugs.
AB:
     drugs-M: sepn. of impurities in, by LC, review
IM:
SC:
     E-Pharmaceutical-chemistry
SS:
COP: Copyright: The Royal Society of Chemistry
AN:
     4905E00003
UD:
     4905
```