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Abstract
Quillaja saponins have an intrinsic capacity to interact with membrane lipids that self-assembles in nanoparticles (immu-
nostimulating complexes or ISCOM-matrices) with outstanding immunoadjuvant activity and low toxicity profile. However, 
the expensive and laborious purification processes applied to purify Quillaja saponins used to assemble ISCOM-matrices 
show an important drawback in the large-scale use of this vaccine adjuvant. Thus, in this study, we describe a protocol to 
appropriately formulate ISCOM-matrices using the raw aqueous extract (AE) of Quillaja lancifolia leaves. In the presence of 
lipids, AE was able to self-assemble in nanostructures that resembles immunostimulating complexes (ISCOM). These nega-
tively charged nanoparticles of approximately 40 nm were characterized by transmission electron microscopy and dynamic 
light scattering. In addition, well-known saponins with remarkable immunoadjuvant activity, as QS-21, were detected into 
nanoparticles. Thus, the easier, robust, cheaper, and environmentally friendly method developed here may be an alternative 
to the classical methods for ISCOM-matrices production that use high-purified saponins.
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1 Introduction

The monotypic genus Quillaja (from Quillajaceae) consists 
of two temperate evergreen tree species. The geographic 
distribution of Quillaja is quite intriguing, with the Andes 
Mountains being a geographical barrier isolating the two 
species. Quillaja saponaria Molina is found in Chile, while 
Quillaja lancifolia D.Don (previously known as Q. brasil-
iensis) is a representative tree of Araucaria forests in south-
ern Brazil, northern Uruguay, northeastern Argentina, and 
eastern Paraguay [1, 2]. Quillaja saponins have a wide range 
of industrial applications—as adjuvants in vaccines, food 
additives, and cosmetic industry. According to Central Bank 
of Chile, quillay extracts brought US$ 52.6 million to the 
Chilean economy in 2019, as 515 tons were exported.

Several Q. saponaria saponins fractions were utilized 
as vaccine adjuvants. The most studied, Quil-A®, a crude 
saponin fraction extracted from Q. saponaria barks [3], is 
widely used in veterinary vaccines. However, Quillaja sap-
onins has inherent toxicity. Therefore, two main approaches 
were applied to circumvent this matter. The first is isolat-
ing molecules with less toxicity from the saponin pool. A 
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successful example, QS-21, was purified from Quil-A® 
and it has been demonstrated to have less toxicity than its 
parent saponin fraction. Today, QS-21 has been extensively 
studied in the form of a sole or combination adjuvant in 
several promising human vaccine formulations and it was 
recently approved to malaria and shingles vaccines [4]. The 
second approach is based on the inherent capacity of Quil-
laja saponins to interact with membrane lipids. Thus, in the 
presence of cholesterol and phosphatidylcholine, Quillaja 
saponins self-assembles in nanoparticles (immunostimu-
lating complexes or ISCOM-matrices) with outstanding 
immunoadjuvant activity [5]. ISCOM-matrices included 
in human vaccines were found to be safe and well tolerated, 
with no serious adverse events [6]. Recently, the recombi-
nant spike protein from SARS-CoV-2 was formulated with 
a Q. saponaria saponin-based nanoadjuvant (Matrix-M®). 
This vaccine demonstrate strong efficacy in phase 3 clinical 
trials demonstrating and is a possible candidate for fighting 
the SARS-CoV-2 pandemic [7].

The congener species Q. lancifolia (“pau-de-sabão”) has 
saponins that are chemically similar to those of Q. saponaria 
barks [8–10], showing a remarkable immunoadjuvant activ-
ity. The immunoadjuvant activity of purified Q. lancifolia 
saponin fractions (denominated QB-90 and QB-80) [11–14], 
as well as their poorly purified AE [15, 16], is equivalent to 
Quil-A®, being already demonstrated in experimental vac-
cines. Regarding AE, MALDI-ToF–MS (matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry) 
revealed peaks that showed similar patterns between Quil-
A® in spectra regions of m/z 750–1000 and 1850–2200, 
which are characteristic of Quillaja saponins [15].

Purified Quillaja saponins fractions such as Quil-A® [17], 
QB-90, and QB-80 [13, 18–20] are recognized to self-assem-
ble in cage-like nanoparticles (ISCOM) in the presence of 
lipids. However, the processes utilized to purify these sapo-
nin-rich fractions are expensive and time-consuming, involv-
ing silica, gel filtration, and reversed-phase chromatography. 
Therefore, processes that minimize and or eliminate steps in 
formulation of ISCOM-like nanoparticles are still desired. 
Here, we presented for the first time, ISCOM-matrices nano-
particles assembled using raw AE of Q. lancifolia.

2  Material and Methods

2.1  Plant Material and Aqueous Extract Preparation

Q. lancifolia D.Don leaves were collected from a 5-year-
old specimen in Eldorado do Sul, RS, Brazil (29° 59′ 26″ 
S–51° 19′ 39″ W). A herbarium specimen is on deposit at 
Herbarium of the Department of Systematics and Ecology 
of Universidade Federal da Paraíba, João Pessoa, Brazil. 
AE preparation were carried out as previously described 
[21]. Briefly, leaves were dried in a circulating air oven at 
37 °C for 5 days and submitted to a knife mill. The powered 
leaves (100 g) were transferred to a flat bottom balloon with 
800 mL of distilled water and maintained for 8 h under slight 
agitation. After, the AE was filtered, and tannins were pre-
cipitated with gelatin. The AE was partitioned with ethyl 
acetate and the organic phase is discarded. The aqueous 
phase is concentrated in a rotary evaporator at 40 °C.

2.2  ISCOM‑Matrices Nanoparticle Preparation

Concisely, a lipid-mix (2 mL) containing chloroform-dis-
solved cholesterol (Sigma-Aldrich, USA) and di-palmitoyl 
phosphatidylcholine (Avanti Polar Lipids, USA) (both at 
100 mg/mL) was mixed with 10 mL of 20% octyl β-D-
glucopyranoside (OGP, Sigma-Aldrich, USA). Five hun-
dred microliters of the lipid-mix were added to 5, 10, 15, or 
20 mg of AE dissolved in 4.5 mL of water. The mixture was 
dialyzed in a 12–14 kDa pre-hydrated dialysis membrane 
at 22 °C in 50 mM Tris–Cl (pH 8.5) containing 0.001% of 
thimerosal for 5 days against 20 L of buffer, changing the 
dialysis buffer every 24 h.

2.3  Transmission Electron Microscopy (TEM)

For TEM analysis, 10 µL of the nanoformulation was placed 
on a copper grid covered with a formvar and carbon film for 
2 min. After, the remaining liquid was drained, and the sample 
was negatively stained with uranyl acetate (2% w/v) for 2 min. 
The analysis was performed in a Jeol JEM 1010 transmission 
electron microscope (Jeol, Japan) at an accelerating voltage of 
90 kV and at magnifications between 30,000 and 150,000X.

2.4  Dynamic Light Scattering (DLS) and ζ‑Potential 
Parameters

Standard operating procedure (SOP) for the dynamic light scat-
tering (DLS): material RI = 1.59, dispersant RI (water) = 1.33, 
T = 25  °C, viscosity (water) = 0.887 cP, measurement 
angle = 173° backscatter, measurement position = seek for 
optimum position, automatic attenuation. Additionally, for 
ζ-potential, automatic attenuation and voltage selection.

Fig. 1  ISCOM-like nanoparticles assembled with Q. lancifolia AE. a 
TEM were obtained after negative staining with uranyl acetate. The 
arrowhead shows the assembly of cage-like particles. The scale bar 
bellows each figure represents 100 nm. b DLS measurements of aver-
age hydrodynamic diameter and ζ-potential of nanoformulations. Size 
distribution were stated as an average of ten measurements. All meas-
urements were carried out at 25 ± 0.1 °C. c MALDI-ToF mass spectra 
of the nanoformulation containing 3  mg/mL of AE showed charac-
teristic peaks of saponins between m/z 1900 and 2200. The products 
were detected as [M +  Na]+ and/or [M +  K]+ ions. d DI-ESI-ToF–MS 
data from Q. lancifolia AE. The most frequent ions were assigned, 
based on its homologous, well characterized, saponins from Q. lanci-
folia and Q. saponaria 

◂
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2.5  Matrix‑Assisted Laser Desorption/Ionization 
Time‑of‑Flight Mass Spectrometry (MALDI‑ToF–
MS)

MALDI-ToF–MS measurements were conducted on a 
Microflex LR MALDI-ToF–MS instrument (Bruker Dalton-
ics, USA) with a 337-nm nitrogen laser operated in positive 
ion lineal mode with delayed extraction and optimized in 
the m/z range of 0–20 kDa. One microliter of each nano-
particle preparation was mixed with 1 μL of matrix solu-
tion (2,5-dihydroxybenzoic acid, 10 mg/mL in  H2O with 1% 
of TFA). The sample and matrix mixes were spotted onto a 
96-well stainless-steel plate and allowed to air dry for 15 min 
at room temperature before measurements. Calibrations were 
performed with a peptide calibration standard mix (Bruker 
Daltonics, USA). The laser was fired 100 times at each of ten 
locations for each sample well on a 96-well plate for a cumu-
lative 1000 shots per sample well taken at 30% intensity.

2.6  AE Saponin Profile by Direct Injection 
Electrospray Ionization (ESI) and Time‑of‑Flight 
Detection (DI‑ESI‑ToF–MS)

For saponin identification, DI-ESI-ToF–MS were applied on 
a micrOTOF II high-resolution mass spectrometer (Bruker 
Daltonics, USA). Spectrometer analysis parameters were as 
follows: 4.5 kV capillary, ESI in negative ion mode, a 500 V 
end plate offset, a 40.6 psi nebulizer, a dry gas (N2) flow 
rate of 8.0 L/h, and a temperature of 200 °C. Spectra (m/z 
1400–2400) were recorded every 2.0 s. The ESI Tuning mix® 
(Sigma Aldrich, USA) was used as the internal calibrator.

3  Results and Discussion

ISCOM-matrices nanoparticles assembly were verified by 
TEM and DLS and are shown in Fig. 1a. The self-assem-
bled nanostructures formulated with AE (1–4 mg/mL) in the 
presence of lipids give a spherical-shaped cage-like particles 
of ~ 40 nm, typical of ISCOM or ISCOM-matrices nanopar-
ticles. However, in formulations containing 3 or 4 mg/mL 
of AE, the number of cage-like particles is high and more 
homogeneous in comparison to formulations containing 
fewer saponins. These observations support the fact that the 

experimental conditions that used a high concentration of 
AE (it also increases the saponin’s concentration) are more 
adequate for the preparation of the observed micelles. Moreo-
ver, aggregates and amorphous structures were also observed, 
particularly in formulations containing 1 and 2 mg/mL of AE.

Concerning DLS measurements (Fig. 1b), the z-average 
size (size distribution by number) was consistent with TEM 
data. Interestingly, the size of the nanoparticles decreases 
when greater amounts of saponins are used in the formu-
lation (Fig. 1b). The particle size in the formulation con-
taining 3 or 4 mg/mL AE was similar, showing once again, 
that these concentrations are suitable for the formulation of 
ISCOM-matrices from raw Q. lancifolia AE. The nanopar-
ticles assembled with AE has a negative zeta (ζ)-potential 
(fluctuating from − 10.1 to − 12.5 mV) since carrying a net 
negative charge due to the glucuronic acid component pre-
sent in Quillaja saponins [22]. Entire ζ-potential data are 
presented in Table 1.

The saponin profile of ISCOM-matrices particles 
assessed by MALDI-ToF–MS is quite similar in all formu-
lations (Fig. 1c), showing saponins with m/z of 1700–1950 
and 2000–2200. This is in agreement with Q. lancifolia 
saponins MS data and shows that these saponins can form 
ISCOM-matrices structures [8, 9, 15]. The most frequent 
ion is 2012.4, which may correspond to saponin with m/z of 
1988.9 (QS-21), detected as [M +  Na]+ ion. In order to con-
firm the identity of QS-21 and tentatively identify another 
Quillajaceae saponins, a direct injection in a high-resolution 
mass spectrometer followed by electrospray ionization and 
time-of-flight MS detection (DI-ESI–MS) was performed.

The most frequent ions were tentatively assigned, based 
on its homologous and well-characterized saponins from 
Quillajaceae, and the full scan of DI-ESI–MS is presented 
in Fig. 1d and in Table 2. Detailed high-resolution MS data 
can be obtained in Fig. 1d. Using this approach, it was pos-
sible to identify the most frequent saponins ions in the Q. 
lancifolia AE. These includes the S4/S6 (QS-21; exact 
mass 1988.9242, detected mass, 1987.9100, error 3.5 ppm), 
15b, S2, and S13 saponins [23–25]. Some ions could not 
be attributed to saponins already identified in Quillaja by 
spectroscopic or spectrometric analysis, indicating probable 
novel molecules in Q. lancifolia leaves (data not shown).

Furthermore, the ISCOM-matrices saponin profile is 
quite similar to QB-90 saponin fraction (Fig. 1). QB-90 is 

Table 1  ζ-potential data ζ-potential (mV) Mob (μmcm/Vs) Cond (mS/cm)

Mean SD Mean SD Mean SD
AE 1 mg/mL  − 12.5 0.624  − 0.9774 0.04745 15.7 0.551
AE 2 mg/mL  − 11.4 0.493  − 0.8897 0.04005 16.4 0.603
AE 3 mg/mL  − 10.1 0.738  − 0.7901 0.05713 17.2 0.603
AE 4 mg/mL  − 12.1 1.19  − 0.9472 0.09329 16.7 0.755
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a C18 reversed-phase chromatography purified Q. lancifolia 
saponin-rich fraction and extensively studied by our research 
group. This similar profile brings to light a possible new sap-
onin purification/enrichment method, based on dialysis. Dial-
ysis-based methodologies are less expensive than techniques 
based on reversed-phase chromatography. Furthermore, dial-
ysis-based purifications do not use organic solvents (such 
as methanol, used to elute QB-1290 from the C18 column), 
resulting in an environmentally friendly process.

The commercial Q. saponaria fraction Quil-A® has been 
successfully used for veterinary applications, but it is known 
that side effects as local reactions and granulomas can be 
attributed to its components. Q. lancifolia AE have some 
advantages. They can induce immune responses similarly 
to Quil-A®, including promoting dose sparing [15, 16, 26, 
27]. This could be explained by the presence QS-21, easily 
detected in AE of Q. lancifolia leaves, that may explain the 
strong immunoadjuvant activity of AE, including B- and 
T-cell immunological responses, and their low toxicity in 
experimental vaccines. Furthermore, AE extraction process 
is simple and less expensive than the laborious and costly 
chemical purification steps to obtain saponin-rich fractions, 
involving silica and reverse-phase chromatography. Regarding 
forest extractivism concerns, AE was derived from leaves of 
Q. lancifolia that are readily renewable alternative sources of 
saponins compared to Q. saponaria barks.

As stated previously, one of the critical issues in the use of 
saponins as vaccine adjuvants is the fact that they can raise 
safety concerns due to their toxic effects in the injection site 
[28]. The results obtained in our previous studies showed that 
AE has a low toxicity profile both in vitro and in vivo [15]. 
Using a hemolysis assay, a widely accepted test to predict sap-
onins toxicity, AE has been shown to cause membrane damage 
at high dose concentrations (with  HD50 close to 1 mg/mL). 
This value is calculated 23-fold higher than Quil-A®  (HD50 
35.9 μg/mL) [15]. The nanoformulations presented here were 
submitted to the hemolysis test and no hemoglobin release 
was verified, indicating no membrane damage. This suggests 
that the membrane-toxic effects are abrogated when saponin 
formulations are complexed with lipids. Additionally, due to 

the presence of the well-characterized saponin QS-21 in Q. 
lancifolia AE, this can be an enriched intermediate for obtain-
ing/purifying this potent adjuvant for use in human vaccines.

According to previous studies involving the immunoadju-
vant potential of AE and the data presented here, we propose 
that Q. lancifolia AE and their nanoparticles has a promising 
saponin-based vaccine adjuvant, as it presents some advan-
tages over commercially available saponins. Foremost, AE 
contains known saponins with a strong immunoadjuvant activ-
ity, as QS-21. Additionally, AE is a raw extract of saponin and, 
as such, is easier and cheaper to produce compared to purified 
saponin fractions. Furthermore, in addition to its efficacy, AE 
was proven to be safe and well-tolerated in mice. Finally, AE 
proved to be able to form cage-like structures similar in shape 
and size to ISCOM particles and, with that, opens up new pos-
sibilities to AE in nanoformulations. These are some advan-
tages that are carefully analyzed when a new vaccine adjuvant 
is considered a candidate to be escalated from experimental 
to industrial uses.
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