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Abstract: Bacterial immobilization is regarded as an enabling technology to improve the stability
and reusability of biocatalysts. Natural polymers are often used as immobilization matrices but
present certain drawbacks, such as biocatalyst leakage and loss of physical integrity upon utilization
in bioprocesses. Herein, we prepared a hybrid polymeric matrix that included silica nanoparticles
for the unprecedented immobilization of the industrially relevant Gluconobacter frateurii (Gfr). This
biocatalyst can valorize glycerol, an abundant by-product of the biodiesel industry, into glyceric acid
(GA) and dihydroxyacetone (DHA). Different concentrations of siliceous nanosized materials, such
as biomimetic Si nanoparticles (SiNps) and montmorillonite (MT), were added to alginate. These
hybrid materials were significantly more resistant by texture analysis and presented a more compact
structure as seen by scanning electron microscopy. The preparation including 4% alginate with 4%
SiNps proved to be the most resistant material, with a homogeneous distribution of the biocatalyst in
the beads as seen by confocal microscopy using a fluorescent mutant of Gfr. It produced the highest
amounts of GA and DHA and could be reused for up to eight consecutive 24 h reactions with no loss
of physical integrity and negligible bacterial leakage. Overall, our results indicate a new approach to
generating biocatalysts using hybrid biopolymer supports.

Keywords: hybrid polymers; biocatalysis; bacterial immobilization; nanomaterials; glycerol;
Gluconobacter

1. Introduction

Biotechnology offers a greener panorama in future product and material manufac-
turing as the industry is transitioning toward net-zero carbon processes [1]. In general,
biotransformations necessitate improvements and optimization studies for feasible and
effective applications. In bacterial biotransformations, the attachment of bacteria to a
carrier material, known as immobilization, can improve productivity and production costs
through stabilization of the catalyst, repeated utilization, and ease of separation [2–4].
Moreover, biotransformations catalyzed by immobilized bacteria are often carried out in
cleaner backgrounds, simplifying downstream processing units [5–7].

An ideal immobilization matrix should possess physical durability, stability, hy-
drophilicity, inertness, easy functionalization, biocompatibility, resistance to microbial
attack, and cost-effectiveness. Various organic and inorganic matrices are available for
bacterial immobilization [8]. The inorganic matrices include sintered glass, ceramics,
carbon-based materials, diatomite, and quartz, while the natural matrices include collagen,
agar, agarose, cellulose, chitosan, and alginate, and synthetic matrices consist of poly-
mers, such as acrylamide, polyurethane, and polyvinyl alcohol [9]. Both inorganic and
organic materials may be used following different strategies for bacterial immobilization,
such as coupling to solid surfaces, encapsulation, aggregation, and entrapment, which
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are frequently used. Coupling involves attaching cells to a surface naturally or by adding
binding agents. Encapsulation entails confining bacteria, where they are separated from
the reaction medium by a barrier. Aggregation involves the formation of cell aggregates
linked naturally or by the addition of flocculating or binding agents [10].

A thoughtful choice of the methodological approach and materials is crucial for the
creation of efficient immobilized biocatalysts [11–13]. In terms of the materials used as
supports, the selection must consider bioprocess conditions, such as pH, temperature,
agitation, or additives, as they may affect said materials [14]. Additionally, the biocatalyst
may be influenced by the nature of the immobilization matrix as it may change its biological
properties [15]. Moreover, physical parameters, such as pore size or total surface area,
directly impact the amount of biocatalyst immobilized as well as the partition of substrates
and products affecting the productivity of biotransformations. Hence, the study of new
supports for biocatalyst immobilization aiming for more efficient bioconversions is not
only timely but also necessary to perfect bioprocesses for their industrial implementation.

Natural polymers such as agar, agarose, chitosan, cellulose, collagen, carrageenan, and
alginate are non-toxic, biocompatible, and biodegradable, which brings them closer to the
concept of ideal carriers or immobilization matrixes for biocatalysts [16]. They contribute
to the sustainability of bioprocesses over synthetic non-biodegradable polymers, such
as polystyrene, or inorganic processed materials, such as sintered glass. However, it is
frequent that upon bacterial immobilization, biocatalytic activity decreases either by loss of
activity or due to partition problems of the substrates and products [17]. Moreover, these
polymers may degrade or present structural issues after sustained or repeated use, causing
matrix rupture and bacterial leakage to the reaction medium. These problems might be
alleviated by varying the physical properties of the immobilization material.

Recently, the use of combined or polymeric hybrid materials for the integration of
biocatalysts has opened a myriad of possibilities in which each of the materials adds
advantages to the final heterogeneous biocatalyst [18–21]. In particular, the integration of
nanomaterials and polymers for bacterial immobilization, although scarcely reported so far,
has very recently been demonstrated to improve the physical properties of the composite
for specific applications [22].

In this work, we have investigated the preparation of hybrid polymeric materials of
alginate and siliceous nanoparticles and their impact on the immobilization of a strain of
Gluconobacter. This type of bacteria has industrial relevance as it catalyzes the incomplete
oxidation of sugars and alcohols, generating products of chemical, pharmaceutical, and
cosmetic interest [5,23–26]. To test the different support materials, we have selected the type
strain Gluconobacter frateurii NBRC103465 (Gfr) [27] that transforms and upgrades glycerol
into dihydroxyacetone (DHA) and glyceric acid (GA) [23]. The biotransformation has
industrial and environmental relevance, as glycerol is inevitably generated as a by-product
of the biodiesel industry [28], and its valorization may help diminish the environmental
problems associated with its disposal in line with the economics of the biofuel industry and
the biorefinery concept. A cost-effective and sustainable process is a must in this transfor-
mation. It competes with the easier but contaminated waste disposal via incineration of
the substrate [29], the high yield but multi-step biotechnological production of DHA with
bacteria in the growing phase [30], and the chemical synthesis of GA, which presents low
selectivity and requires heavy metal catalysts as well as extreme reaction conditions [31,32].
We, therefore, worked under the hypothesis that the use of a polymeric hybrid material
would improve the properties of an immobilized biocatalyst of Gfr for a more sustainable
biotransformation of glycerol into DHA and GA.

2. Materials and Methods
2.1. Materials

Glucose, K2HPO4, NaH2PO4, CaCl2.2H2O, HCl, and pure glycerol (Carlo Erba Reagents,
Val-de-Reuil, France). Peptone (PanReac AppliChem, Barcelona, Spain). Yeast extract and
agar (Oxoid, Basingstoke, UK). MgSO4.7H2O (J.T. Baker, PA, USA). KH2PO4 (Macron Chem-
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icals, PA, USA). Tetramethyl orthosilicate (TMOS) (Merck, Darmstadt, Germany). Agarose
(Bioron, Römerberg, Germany). Alginate (Sigma, Burlington, VT, USA). Montmorillonite
(MT) (Aldrich, Burlington, VT, USA).

2.2. Bacterial Strains and Plasmids

Gluconobacter frateurii NBRC103465 (Gfr) was obtained from the National Institute of
Technology and Evaluation (NITE) (Tokyo, Japan).

Plasmid MYMH 464 was a gift from Meng How Tan (Addgene plasmid #138068;
http://n2t.net/addgene:138068; RRID:Addgene_138068). Plasmid pSEVA231-CRISPR was
a gift from Víctor de Lorenzo (Addgene plasmid #138712; http://n2t.net/addgene:138712;
RRID:Addgene_138712)

2.3. Plasmid Construction and Bacterial Modification

The p104-mCherry cassette was obtained from the MYMY464 plasmid and cloned
into the pSEVA231-CRISPR vector using XbaI and BamHI enzymes. The construction
was amplified in E. coli DH5α and named p104–pSEVA231–mCherry. The fluorescent
strain G. oxydans p104–pSEVA231–mCherry was generated by electroporation of the p104–
pSEVA231–mCherry plasmid into electrocompetent G. oxydans cells. Positive clones were
selected with 50 µg/mL kanamycin.

2.4. Bacterial Inoculum Preparation

The Gfr precultures were prepared as described by Habe et al. [33] in 3 mL of glucose-
containing medium (5 g/L peptone, 5 g/L yeast extract, D-glucose 5 g/L, MgSO4.7H2O
1 g/L, pH 6.5) and were incubated at 30 ◦C and 180 rpm for 16 h. Cultures of 250 mL
were inoculated with 6 mL of Gfr preculture and incubated at 30 ◦C and 180 rpm in 1 L
flasks containing growth medium with pure glycerol (glycerol 100 g/L, peptone 9 g/L,
yeast extract 1 g/L, KH2PO4 0.9 g/L, K2HPO4 0.1 g/L, MgSO4.7H2O 1 g/L, pH 6.0) [33].
At an OD600 nm value of 1, a volume corresponding to 20 mg dry cell weight (DCW) was
centrifuged for 15 min at 5000 rpm and 4 ◦C. The bacterial pellet was washed with 30 mM
phosphate buffer (NaH2PO4 4.14 g/L, K2HPO4 5.23 g/L, pH 7.0), hereinafter referred to
as washing buffer, to remove debris from the growth medium and finally centrifuged at
5000 rpm at 4 ◦C for 15 min again, discarding the supernatant. The bacterial pellets were
stored at −20 ◦C until later use.

2.5. Silica Nanoparticles (SiNps) Synthesis

Silica nanoparticles were synthesized following a protocol described in previous
work [34]. Briefly, a mixture of 20 mL of sodium phosphate buffer 100 mM pH 8.0, 5 mL
of a 5% solution of polyethyleneimine (MW 1300), and 5 mL of previously hydrolyzed
tetramethyl orthosilicate (TMOS) was prepared in a 50 mL tube. The hydrolyzation of
TMOS was performed by adding 942 µL of TMOS to 6 mL of HCl 1 mM and subsequently
mixing the resulting solution using a vortex. The SiNps were immediately formed upon
the addition of the hydrolyzed TMOS. To remove any remaining reactants present in the
buffer, the SiNps suspension was centrifuged at 5000 rpm for 10 min and washed thrice
with 30 mL of distilled water.

2.6. Bacterial Immobilization

For the preparation of the agar and agarose beads, 20 mg DCW (5 × 1010 UFC) was
mixed with 3 mL of a 3% agar or agarose solution [35]. The homogeneous mixture was
added dropwise to a beaker containing cold sunflower oil while stirring. The resulting
beads (AR3 and AE3 for agar and agarose, respectively) were separated using a strainer and
washed with hexane and washing buffer. For the preparation of the alginate beads, 20 mg
DCW was mixed with 2 mL of 6% alginate and 1 mL of water (A4), 1 mL of montmorillonite
(MT) at 30 or 120 mg/mL (A4M1 and A4M4), or SiNps (A4S1 and A4S4) at 30 or 120 mg/mL
for a final alginate concentration of 4%. The alginate or hybrid mixtures containing the
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cells were added dropwise using a syringe pump (20 µL/s) to 30 mL of CaCl2 50 mM. The
beads were incubated for 1 h at 4 ◦C, separated using a strainer, and washed thoroughly
with distilled water.

The dimensions of all the immobilized preparations were measured using ImageJ
software (V 1.53e) (National Institutes of Health, Bethesda, MD, USA).

2.7. Scanning Electron Microscopy Analysis

The alginate bead morphology was studied using scanning electron microscopy (SEM).
The beads were frozen, freeze-fractured in liquid nitrogen, and gold coated, as described
by Simoni et al. [36]. The ice was removed from the fractured specimens by vacuum
sublimation (freeze-drying) using a LyoQuest lyophilizer (Telstar, Barcelona, Spain. The
samples were then visualized by high-resolution field emission environmental scanning
electron microscopy using a Quanta FEG 250 microscope (FEI, OR, USA) under low vacuum
conditions with a beam voltage of 10 kV and a magnification of 100× or 1600×.

2.8. Texture Analysis

The analyses were carried out using a TA.XT.Plus texture analyzer from Stable Micro
Systems. A total of 10 beads for each condition (4% alginate (A4), 4% alginate + 1% MT
(A4M1), 4% alginate + 4% MT (A4M4), 4% alginate + 1% SiNps (A4S1), or 4% alginate + 4%
SiNps (A4S4)) was tested. The probe was a cylindric P2, and the cell load was 5 kg. The test
mode was compression, the pre-test speed was 5 mm/s, the test speed was 1 mm/s, and
the post-test speed was 5 mm/s. The target mode was set to Strain (100%). The trigger type
was set as Auto (Force), and the trigger force was 1 N. The break mode was set to Level
and the break sensitivity was 10 g.

Statistical analyses of variance (ANOVA) were performed using Prism 8.0.1 software
(GraphPad Software, San Diego, CA, USA).

2.9. Confocal Microscopy Analysis

The immobilized biocatalyst was analyzed by confocal microscopy using a confocal
ZEISS LSM 800. Hybrid and alginate polymeric matrices containing the fluorescent strain
G. frateurii p104–pSEVA231–mCherry were whole-mounted in distilled water. A × 63
(1.3 numerical aperture) oil-immersion objective was used to acquire Z-stacks, and max-
imum intensity projections of the optical sections were created with ImageJ software
(V 1.53e).

2.10. Conversion of Glycerol to GA and DHA

Pure glycerol conversions with resting cells in shake flasks were carried out as de-
scribed in previous work using starting glycerol concentrations of 200 g/L in water [23].
Glycerol conversions with immobilized preparations were carried out in 250 mL Erlen-
meyer flasks containing 30 mL of 200 g/L glycerol in water. The inoculum of each reaction
was 20 mg DCW immobilized in 3 mL of 3% agar or agarose (AR3 and AE3, respectively),
3 mL of 4% alginate (A4), 4% alginate + MT 1% (A4M1), 4% alginate + MT 4% (A4M4),
4% alginate + SiNps 1% (A4S1), or 4% alginate + SiNps 4% (A4S4). Samples were periodi-
cally withdrawn from the reactions and analyzed by HPLC. The turbidity of the reaction
medium was determined by spectrophotometry at 600 nm using a Shimadzu UV-1800
spectrophotometer (Kyoto, Japan).

2.11. Reuse of Resting and Immobilized Cells

Resting as well as immobilized cells were reused in 24 h reactions. Each time, the cells
and beads containing the immobilized cells were harvested from the reaction flasks using
either centrifugation or a strainer in the case of the beads and washed once with 10 mL of
distilled water. After the washing, the biocatalysts were placed in a 250 mL flask containing
30 mL of 200 g/L of glycerol in water for another round of reaction.
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The residual activity was calculated after each use considering the obtained yield
(g/L) of use 1 as 100%.

2.12. HPLC Analysis

During all the experiments, 400 µL samples were taken periodically. The samples
were centrifuged at 15,000 rpm for 15 min at 4 ◦C. Each sample was subsequently filtered
with a 0.22 µm filter treated with 2% polyvinylpyrrolidone (PVP) and analyzed by HPLC.
The production of GA and DHA was analyzed using Shimadzu Nexera X2 HPLC equip-
ment (Kyoto, Japan) with a diode array detector. The column was an Aminex® HPX-87C
300 × 7.8 mm (Bio-Rad, Hercules, CA, USA), with a pre-column loaded with a 4 × 3.0 mm
SecurityGuard™ cartridge from Phenomenex Carbo-H columns (Phenomenex, Torrance,
CA, USA). The column was incubated at 70 ◦C, and the mobile phase was 5 mM sulfuric
acid. Detection was carried out at 210 nm for GA, 271 nm for DHA, and 190 nm for glycerol,
with a 0.6 mL/min flow rate for 19 min. The recorded retention times were GA (12.9 min),
DHA (16.7 min), and glycerol (14.7 min). The samples were injected using a volume of
20 µL. Calibration curves were constructed for GA (0.02–33 g/L), DHA (0.15–5 g/L), and
glycerol (0.15–20 g/L). The samples were analyzed using LabSolutions software (V5.111)
(Shimadzu, Kyoto, Japan).

The data presented throughout the manuscript reflect the mean values of three inde-
pendent experiments. The error bars represent the standard deviation.

3. Results and Discussion

Agar, agarose, and alginate are polymers commonly used as matrices in bacterial
immobilization [35,37]. Their selection of inorganic or synthetic polymers is often based on
the fact that they are affordable and chemically inert. Moreover, the obtention of immobi-
lized biocatalysts with these polymers is achieved by a facile entrapment of bacteria upon
mixing the biomass with an aqueous agar, agarose, or alginate solution and subsequent
dropwise addition of the resulting mixture into a solution of CaCl2 (for alginate) or cold
sunflower oil (for agar and agarose).

It is worth noting that the CaCl2 concentration may affect the alginate properties
among other variables [38] (i.e., alginate concentrations, gelation temperatures, incuba-
tion times, etc.) that were fixed in this study in order to focus on the advantages of the
combination of different materials.

In a previous study, we reported the unprecedented immobilization of Gluconobacter
oxydans (Gox) in 3% agar (AR3) and 3% agarose (AE3). Gox is also able to catalyze the
conversion of glycerol, but only to DHA. The work established that they were suitable
matrices for DHA production and allowed the biocatalyst’s repeated use in water, which
was proven unfeasible with resting cells [5].

Herein, we evaluated AR3, AE3, and 4% alginate (A4) previous to the preparation of
hybrid polymers for the immobilization of a different strain of Gluconobacter, Gfr, and its
potential use in the preparation of not only DHA but also GA in the glycerol transformation.
Despite alginate, agar, and agarose being well-known matrices for bacterial immobilization,
to the best of our knowledge, there are no previous reports of them being used for Gfr
immobilization and/or the production of GA. Therefore, it was necessary to evaluate the
immobilization of this strain in the natural polymers by themselves.

Following the standard approach for entrapment in the different polymers described
in the Methods, we obtained three different immobilized biocatalysts from 20 mg of
dried cell weight. The number of beads obtained as well as the resulting beads’ mean
diameter and size and shape distribution varied within the matrixes and immobilization
techniques (Figure S1, Table S1). These immobilized preparations were then tested in
bioconversion reactions.

In a previous study, we established that elevated glycerol concentrations produce
higher GA yields [23]. In accordance with those results, we selected a concentration of
200 g/L of glycerol to carry out the biotransformation with the immobilized preparations.
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All the immobilized preparations were able to produce GA from 200 g/L of glycerol in
water, although the conversions were lower than that obtained with resting cells (Figure 1).
A decrease in product formation after immobilization is commonplace, as there may be
partition issues that can affect substrate and product diffusion to and from the beads.
However, immobilized biocatalysts are often protected against inactivating agents that can
be present in a feedstock, such as crude glycerol. Therefore, further studies are necessary to
evaluate the contribution of this technology to the process. Additionally, immobilization
enables easier reusability and facile separation, which is a desirable characteristic in a
biocatalyst with potential industrial application.
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Figure 1. Glycerol conversion with Gluconobacter frateurii (Gfr) immobilized in different matrixes
(a) Glyceric acid (GA) production in 20 h. (b) Dihydroxyacetone (DHA) production in 20 h. Reac-
tions were performed in 30 mL of 200 g/L glycerol in water using 20 mg Dry Cell Weight (DCW)
immobilized in the different supports.

After 20 h of reaction, GA production was slightly superior to A4 preparations, while
DHA production was comparable between all the preparations (Figure 1). The standard
deviation obtained in the production of DHA for agar and agarose seems significantly
higher than that of the GA concentration. Given that these products are formed by different
membrane-associated enzymes, glycerol dehydrogenase (GDH) for DHA and alcohol dehy-
drogenase (mADH) for GA, it is plausible that slight differences in the temperature during
the immobilization process could have impacted GDH residual activity, thus producing
beads with varying DHA producing abilities.

Altogether, the A4 preparations performed better than AR4 and AE4. Thus, this
immobilization technique was selected for further experiments.

As mentioned before, oftentimes, natural polymer matrices are labile, making their
sustained reuse difficult and causing bacterial leakage from the matrix to the medium.
In fact, in a recent work, we observed that alginate preparations of G. oxydans lost their
complete structural integrity after four repeated uses [39]. An interesting alternative to
enhance the structural properties of hydrogels is the addition of nanostructured materials
to the matrix. Examples of these nanomaterials are silica nanoparticles (SiNps) and clays,
such as montmorillonite (MT) [40–44]. Through their addition to the alginate matrix,
the mechanical resistance can be improved, avoiding matrix breakage. In addition, the
incorporation of these silicious nanomaterials could contribute to a decrease in bacterial
leakage through the formation of electrostatic interactions. Indeed, bacteria are known
to adhere to the surface of MT [45–47], while the properties of biomimetic silica, such as
a superficial charge, may contribute to bacterial adhesion [34,48]. It is worth noting that
both materials are inherently green. MT is a natural clay, and the SiNps to be used are
biomimetic, that is, synthesized without the need for an organic solvent and heat, and they
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are smart, as they can disintegrate upon usage [49]. We, therefore, combined alginate and
these two nanomaterials to immobilize Gfr to improve the matrix’s properties (Scheme 1).
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Scheme 1. Schematic representation of hybrid immobilized preparations combining alginate and
nanomaterials. MT: montmorillonite, SiNp: Silica nanoparticle.

We evaluated the addition of SiNps and MT in two different concentrations (1% and
4% w/v), using alginate-only beads (A4) as a control. The immobilization protocol was
the same as the one used for the A4 immobilized preparations, but with an initial step in
which the bacterial pellets were mixed with the nanomaterials. The resulting preparations
were named as follows: 4% alginate with 1% MT (A4M1), 4% alginate with 4% MT (A4M4),
4% alginate with 1% SiNps (A4S1), and 4% alginate with 4% SiNps (A4S4). All hybrid
preparations presented similar sizes (3.6 ± 0.4 mm on average) and spherical shapes, with
slight color differences associated with the addition of the nanomaterials (Figure 2).
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(c) A4M4. (d) A4S1. (e) A4S4.
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Further characterization of the hybrid preparations was carried out by scanning
electron microscopy (SEM). To prevent significant structural collapse, each bead was
initially frozen and freeze-fractured using liquid nitrogen and subsequently dried by
lyophilization, as described by Simoni et al. [36]. It is clear from the SEM analysis that
the internal structure of the immobilized preparations changed upon the addition of the
siliceous materials (Figure 2). Moreover, the micrographs showed that A4S1 and A4S4 were
the preparations that collapsed the least (Figure 2, panels d2 and e2, respectively), while
the other preparations showed clear signs of structural collapse (Figure 2, panels a2, b2,
and c2). This indicates that the matrices containing SiNps are more rigid and might be
more resistant, which is beneficial for bioconversion purposes. This observation may be
linked to an increased number of hydrogen bonds between the two materials, as proposed
by Yang et al. [50], who studied composite aerogels made of agarose and SiO2 for thermal
insulation applications. Additionally, the integration of agarose and alginate beads with
Si materials could also be driven by polar interactions between the uncharged siloxane
groups and the hydroxyl groups of the alginate biopolymer [51].

Close-ups of the cross-sections of the resulting beads revealed differences in the poros-
ity of the matrices. Larger pores can be observed in the control A4 bead (Figure 2, panel a3),
while the incorporation of MT resulted in less porosity, as clay particles can be seen clogging
the pores. This decrease in porosity seems to be concentration-dependent, evidenced by the
differences observed in the micrographs (Figure 2, panels b3 and c3). Similar results were
obtained by Etcheverry et al. [51] when investigating agar and montmorillonite materials
for the removal of pollutants and by Polat et al. in wound dressing applications [52].
Furthermore, the immobilized preparations that contained SiNps (A4S1 and A4S4) pre-
sented a distinctive morphology as no evident pores were seen in either of the micrographs
(Figure 2, panels d3 and e3). A tighter matrix mesh can be correlated with greater me-
chanical resistance and may allow for a decrease in bacterial leakage, a common problem
regarding alginate matrices [39].

Knowledge of the properties of polymers applied to the field of bioengineering is
fundamental, as their physical properties have proven in the past to play a role in the
mass transfer that occurs through the beads in response to external forces, their mechanical
resistance, etc. We, therefore, proceeded to further characterize the mechanical properties
of the hybrid alginate biocatalysts. All the preparations were assessed for their mechanical
resistance. The force needed to break the preparations was evaluated using a texture
analyzer (Figure 3).
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In all the cases, the addition of the nanostructured materials resulted in significantly
more resistant hybrid preparations in comparison to the control (A4). The higher the
percentage of MT and SiNps, the greater the resistance to rupture, and A4S4 was the
immobilized preparation that presented the best results.
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To evaluate the ability of the hybrid preparations to synthesize GA and DHA, glycerol
conversion reactions were carried out at an initial substrate concentration of 200 g/L
(Figure S2, Table 1). The initial velocities of the product formation differed amongst the
immobilized preparations, especially in GA production with A4S1 and A4S4. Nevertheless,
after 170 h, GA production was similar for every immobilized preparation, including the
control (A4), reaching concentrations of about 8 g/L. DHA production, however, was better
with the hybrid preparations including SiNps, as 9.7 ± 0.3 g/L and 10.8 ± 0.9 g/L were
obtained with the A4S1 and A4S4 preparations, respectively. This could be explained by
better resistance of the GDH enzyme (responsible for glycerol oxidation into DHA) to
this immobilization matrix or by lesser diffusional restrictions imposed on the DHA by
this material. It is noteworthy that after 24 h of reaction, the A4S1 and A4S4 preparations
started presenting a yellow hue, which further intensified throughout the duration of the
experiment and seems to be dependent on the SiNps concentration. Control experiments
were carried out for 24 h in the absence of Gfr and the absence of glycerol with no change
in color (Figure S3). This indicates that glycerol oxidation by Gfr caused the change in
coloration, probably by promoting polyethyleneimine’s amino group’s oxidation remaining
from the SiNps synthesis.

Table 1. GA and DHA production from glycerol with various alginate-based immobilized prepara-
tions of Gfr.

Immobilized
Preparation

Initial Bead
Diameter (mm)

Final Bead
Diameter (mm) a

Maximum GA
Yield (g/L) a

Maximum DHA
Yield (g/L) a

Final DO600 nm
Value

A4 3.7 ± 0.5 3.5 ± 0.5 7.7 ± 0.5 4.8 ± 0.2 0.368 ± 0.042
A4M1 3.7 ± 0.3 3.5 ± 0.3 8.3 ± 0.5 6.1 ± 0.5 0.095 ± 0.021
A4M4 3.5 ± 0.4 3.1 ± 0.4 8.1 ± 0.6 5.6 ± 0.1 0.106 ± 0.031
A4S1 3.5 ± 0.3 2.8 ± 0.3 8.9 ± 0.2 9.7 ± 0.3 0.137 ± 0.154
A4S4 3.9 ± 0.4 2.7 ± 0.3 8.7 ± 0.8 10.8 ± 0.9 0.039 ± 0.007

a After 170 h.

An evaluation by UV-VIS spectrophotometry of the reaction supernatants after 170 h of
production showed that all the hybrid preparations delivered the cleanest reaction crudes
(Figure S4, Table 1). On the contrary, the A4 preparations showed higher turbidity, probably
due to matrix damage and bacterial leakage. These results are encouraging, as a cleaner
reaction supernatant requires less downstream processing.

Given the better results obtained with the A4 immobilized preparations, an experiment
was conducted to determine if the addition of SiNps to the alginate matrix contributes
to the decrease in bacterial leakage from the immobilized preparations to the reaction
medium. For this experiment, a glycerol conversion reaction was simulated, but the
reaction medium was replaced with sterile water. In contrast to previous experiments, Gfr
was immobilized in aseptic conditions in the A4 and A4S4 matrices. All the reagents and
materials were sterilized before use. Samples of the reaction supernatants were taken after
24 h and plated, and the colony-forming units per mL (CFU/mL) obtained in each case were
counted. The incorporation of SiNps into the A4S4 preparations contributed to diminishing
bacterial leakage, as the UFC/mL detected in the hybrid supernatant (A4S4) was merely
10% of the total UFC/mL detected in the control supernatant (A4) (150 ± 71 UFC/mL and
1310 ± 297 UFC/mL, respectively). A plausible explanation for this phenomenon may be
related to the establishment of ionic interactions between Gfr and the matrix. SiNps are
positively charged due to polyethyleneimine, while the lipopolysaccharides present in the
outer membrane of Gram-negative bacteria, such as Gfr, have a negative charge [34,48].
Moreover, the better physical resistance of this material linked to the tighter matrix mesh,
as seen by SEM analysis, could be related to reduced pore sizes that diminish bacterial
leakage. It is noteworthy that bacterial leakage from both preparations was low, as 20 mg
of dry cell weight of bacteria equals approximately 5 × 1010 UFC.
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To study whether the bacteria were integrated into the hybrid and non-hybrid polymer,
both the A4 and A4S4 preparations were analyzed by confocal microscopy. For this
experiment, a mutant of Gluconobacter oxydans (Gox) expressing mCherry fluorescent
protein was used in the same immobilization experiments developed for Gfr. Both catalysts
showed a similar homogeneous bacterial integration on the material. However, the images
presented slight differences that seem to be related to the hardness of the catalysts, as a
cleaner cut was achieved in the A4 preparations in comparison to that obtained in the A4S4
preparations (Figure 4). This similar bacterial distribution is consistent with the comparable
DHA and GA conversion results that were previously demonstrated.
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Figure 4. Confocal analysis of immobilized preparation of a fluorescent Gox within (a) A4 and
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Multiple or repeated batch transformation cycles are a paramount goal when de-
signing immobilized biocatalysts for bioconversions. The possibility of reusing the same
biocatalysts reduces costs, intensifying and increasing the sustainability of the process. One
determinant property of the immobilized biocatalysts for this purpose is the mechanical
resistance of the immobilization matrix, which while maintaining its physical integrity
may protect the biological catalyst for longer periods from harsh conditions and its leakage
to the reaction medium. We, therefore, studied the reusability of the A4S4 preparations
in comparison with resting cells by evaluating the residual activity after 24 h glycerol
conversion reactions (Figure 5). For each use, a comparison of the analysis of the substrates
and products for t0 and t24 h was conducted. The resting cells of Gfr could not be reused
successfully, as both GA and DHA production diminished almost completely after the first
use (Figure 5a). Regarding the immobilized preparations, a control was carried out with
the A4 preparations. As previously mentioned, alginate matrices can sometimes be labile,
hindering their reusability. In line with that, repeated glycerol conversion control reactions
with the A4 preparations showed a sensible loss in both residual activity and structure.
Residual GA production activity diminished to 23.1 ± 5.6% after the third consecutive use
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and continued under 20% for the rest of the experiment (Figure 5b). Similar results were
obtained for DHA, as its production diminished to 14.5 ± 0.9% after three uses and ceased
completely after five uses. Moreover, the structural integrity of the A4 preparations was
compromised after five consecutive uses, when the beads started to show clear signs of
swelling and physical disruption. After eight uses, all the beads were damaged (Figure S5).
In contrast, the A4S4 preparations were successfully reused in eight successive glycerol
24 h conversion reactions (Figure 5c). The reusability of the A4S4 preparations was vastly
superior to that of the A4 preparations. The residual activity was maintained above 20%
for GA in seven subsequent uses, slightly diminishing to 16.0 ± 0.5% after eight subse-
quent uses. The DHA residual activity was also maintained above 20% for six uses and
diminished to 11.0 ± 1.0% after eight subsequent uses. Unlike the A4 preparations, there
were no signs of swelling or damage to the immobilization matrix after eight consecutive
uses. Remarkably, the average bead diameter for the A4S4 preparations descended from
3.9 ± 0.3 mm to 2.6 ± 0.3 mm (Table S2).
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Figure 5. Reusability evaluation of Gfr-based biocatalysts. (a) Repeated conversion of pure glycerol
using resting cells. (b) Repeated conversion of pure glycerol using A4 immobilized preparations.
(c) Repeated conversion of pure glycerol using A4S4 immobilized preparations. Residual GA produc-
tion activity (red), residual DHA production activity (blue). Each use lasted 24 h.

4. Conclusions

The industrial application of immobilized biocatalysts significantly depends on the
proper design of the immobilization strategy and the material used as support. High activity
and reusability are both desired properties when immobilizing biocatalysts. Biopolymers
have several advantages as support for bacterial integration but often lack physical resis-
tance, which ultimately impacts bioprocess productivity. Herein, we have demonstrated
that several organic matrices allow the immobilization of Gfr, an efficient biocatalyst that
can valorize glycerol into GA and DHA and which had not been heterogenized before
nor used immobilized in the studied biotransformation. Moreover, in aiming to improve
the biocatalyst properties, we have proven that the incorporation of nanosized siliceous
materials into alginate immobilized preparations of Gfr enables better reusability, improved
physical resistance, and significantly diminishes bacterial leakage. The immobilized prepa-
ration that combined alginate 4% with SiNps 4% (A4S4) was successfully used for glycerol
conversion. The strategy described here provides a simple and effective approach for
biotechnologists to create stable, solid-phase biocatalysts, not only for glycerol valorization
but also for other bioconversions that seek to improve their sustainability. Moreover, we
envision that the strategy developed here of integrating Si nanoparticles into alginate for
biocatalyst immobilization could be extended to other natural polymer applications, such
as tissue engineering, drug release systems, or a bioartificial medium for cell culture.
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