Density functional investigation of thioepoxidated and thiolated graphene

Dublin Core


Density functional investigation of thioepoxidated and thiolated graphene




Employing first-principle calculations, we have investigated the interaction between graphene and the thioepoxide and thiol groups. The SH radical cannot be chemisorbed on perfect graphene, although it is physisorbed. The chemisorption energy can be increased to 0.4 eV if multiple SH groups are bonded to the sheet or if they are attached to Stones-Wales defects. However, when free-energy corrections are considered, the addition of SH groups to perfect graphene is not spontaneous. In the case of the SW defects, the addition is favorable if two SH groups are attached to the shortest CC bond and in opposite sites of the sheet. The single vacancy defect site has the highest affinity for the SH radical, which is dissociatively attached. Finally, employing nanoribbons, we have simulated the reactivity of bare and hydrogen-terminated edges of graphene. The SH group is dissociatively bonded to bare edges. However, hydrogen-terminated zigzag edges prefer to bind the SH group. Considering the different reactivities observed, the defect sites and edges of graphene can be labeled by employing SH radicals. The sites containing sulfur can be used to attach gold nanoparticles or create vertical arrays of graphene sheets on Au surfaces. Finally, for thioepoxidated graphene, we have determined that the binding energy per S atom is 0.49 eV, larger than that determined for the thiol group but very small to be achieved experimentally because the free-energy change is expected to be close to 0 for this process. These results confirm the experimental evidence, which indicated that the sulfur-containing groups present in sulfur-graphite nanocomposites are attached to the edges of graphite, although vacancy defect sites must be considered. The electronic properties of the functionalized and defective graphene sheets are discussed. As a byproduct, we have found that the free-energy term may turn the attachment of a single HO group to graphene to be not spontaneous. Thus, the OH groups observed in graphene oxide are present at defect sites or agglomerated, to have their binding energy increased due to cooperative effects, confirming earlier experimental results.


Journal of Physical Chemistry C |g v.113, no.114, 2009. -- p.5612-5619


American Chemical Society




Información sobre Derechos de Autor

(Por favor lea este aviso antes de abrir los documentos u objetos)

La legislación uruguaya protege el derecho de autor sobre toda creación literaria, científica o artística, tanto en lo que tiene que ver con sus derechos morales, como en lo referente a los derechos patrimoniales con sujeción a lo establecido por el derecho común y las siguientes leyes (LEY 9.739 DE 17 DE DICIEMBRE DE 1937 SOBRE PROPIEDAD LITERARIA Y ARTISTICA CON LAS MODIFICACIONES INTRODUCIDAS POR LA LEY DE DERECHO DE AUTOR Y DERECHOS CONEXOS No. 17.616 DE 10 DE ENERO DE 2003, LEY 17.805 DE 26 DE AGOSTO DE 2004, LEY 18.046 DE 24 DE OCTUBRE DE 2006 LEY 18.046 DE 24 DE OCTUBRE DE 2006)

ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso: Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con fines de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes debe indicarse el nombre de la persona autora.






Fecha de agregación
February 20, 2014
Bibliografía Nacional Química
Tipo de Elemento
Denis, Pablo Andrés, “Density functional investigation of thioepoxidated and thiolated graphene,” RIQUIM - Repositorio Institucional de la Facultad de Química - UdelaR, accessed May 20, 2024,